- mlhxueli
- 拌三丝
-
只要把系数相乘,字母抄下来,再把字母相应的指数相加不就行了吗!
- Jm-R
-
题不清楚。。
单项式乘单项式公式
单项式乘单项式公式是3a·3b=3b·3a(乘法交换律)=(3*3)·(a·b)(乘法结合律)=9ab。单项式乘法法则是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式。而且积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。若某一变数字母只含在一个单项式里,则在乘积中这一变数字母的指数不变,这因为该变数字母的指数在另一单项式中应该认为等于零。2023-07-02 16:45:061
单项式的乘法是什么?
单项式的乘法指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积。单项式乘法法则:几个单项式相乘,首先把各个单项式的系数相乘的积作为积的系数,然后把相同变数字母的幂相乘,底数不变,指数相加的和作为积里这个变数字母的指数,将只在某一个单项式中含有的变数字母,连同它的指数作为积的一个因式写在积里,并把最后结果写成单项式的标准形式。单项式乘法的运算步骤1、把它们的系数相乘,包括符号的计算。2、同底数幂相乘。3、只在一个单项式里含有的字母及其指数不变。将这三部分的乘积作为计算的结果。2023-07-02 16:45:121
单项式乘以单项式的运算法则
单项式乘以单项式的运算法则如下:单项式乘单项式的法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。这里要注意的是单项式乘以单项式的结果仍是单项式。当有乘方运算时,先算乘方,再算单项式相乘。对于三个或三个以上的单项式相乘,单项式乘以单项式的法则仍然适用。四点注意事项要牢记,以免犯错被扣分:1、在开始计算前,可以先确定结果的符号,这个在实际教学中,很多同学会犯这样的错误,有的不带符号计算,有的带了,写结果的时候粗心漏点了,因此符号问题,我们必须要首先考虑。2、如果遇到混合运算时,一定要按运算法则来依次进行,即:先乘方开方,再乘除,最后加减。3、单个字母一定要在最后的结论中出现,千万不要随意的漏点这点,它也是积的一部分。4、计算时,千万不要出现计算出错的情况,每一步一定要写的清清楚楚,以防止出现错误,能够快速的检查所写的过程,找到错误的原因——这一点很值得大家借鉴应用,确实很实用。2023-07-02 16:45:301
单项式和多项式相乘的法则
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所有的项相加即 m(a+b+c)=ma+mb+mc ——(m,a,b,c都是单项式)1.利用法则进行单项式和多项式运算时要注意: (1)多项式每一项都包括前面的符号,例如 中的多项式,共有两项,就是 .运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.2·根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;3·非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;4·对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.2023-07-02 16:45:522
单项式乘以单项式的结果是什么?
单项式乘以单项式的结果仍然是单项式。根据单项式乘法法则:是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。2023-07-02 16:45:591
单项式乘以单项式的法则
先乘系数,再把相同字母相乘(底数不变指数相加)2023-07-02 16:46:073
单项式乘单项式应该怎样运算
数字和数字相乘,字母与字母相乘,不能漏项2023-07-02 16:46:153
如何理解 单项式与单项式相乘法则
单项式乘以单项式的法则:单项式乘以单项式,就是把系数和相同字母分别相乘,作为积的因式,对于只在一个单项式里出现的字母,连同它的指数作为积的一个因式。2023-07-02 16:46:301
单项式乘以单项式结果一定是单项式吗
单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式.2023-07-02 16:46:383
单项式乘以单项式法则
单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式。(在计算系数时,应先确定符号,再计算绝对值,当系数为-1时,只须在结果的最前面写上“-”)2023-07-02 16:46:571
单项式乘以单项式m(a-b+c)
单项式乘以单项式:用单项式去乘多项式的每一项(乘法分配律),m(a-b+c)=ma+mb+mc.2023-07-02 16:47:061
单项式乘以单项式
单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式.2023-07-02 16:47:153
高数 因式分解怎么学
多项式长除法。2023-07-02 16:47:353
。。。。。。。单项式乘以单项式
2023-07-02 16:47:523
单项式乘单项式由哪三部分组成
单项式乘以单项式由下面三部分组成:一把系数相乘作为积的系数;二把同底数幂相乘;三对于只在一个单项式里含有的字母则连同它的指数作为积的一个因式。2023-07-02 16:48:191
我要七年级下学期的数学学习总结
七年级下册数学知识点(性质.定理.概念) <北师大版>第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。※2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八.完全平方公式¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,¤即 ;¤口决:首平方,尾平方,2倍乘积在中央;¤2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。九.整式的除法¤1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。第二章 平行线与相交线一.台球桌面上的角※1.互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。二.探索直线平行的条件※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。三.平行线的特征※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。四.用尺规作线段和角※1.关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。※2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。第三章生活中的数据※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。¤3.统计工作包括:①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。第四章 概率¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。※3.了解必然事件和不可能事件发生的概率。必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1※4.了解几何概率这类问题的计算方法事件发生概率= 第五章 三角形一.认识三角形1.关于三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。这里要注意两点:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。2.关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。三角形三边关系的另一个性质:三角形任意两边之差小于第三边。对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。设三角形三边的长分别为a、b、c则:①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。3.关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。4.关于三角形的中线、高和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。 二.图形的全等¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。四.全等三角形¤1.关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。※2.全等三角形的对应边相等,对应角相等。¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。五.探三角形全等的条件※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”六.作三角形1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。八.探索直三角形全等的条件※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。直角三角形的其他判定方法可以归纳如下:①两条直角边对应相等的两个直角三角形全等;②有一个锐角和一条边对应相等的两个直角三角形全等。③三条边对应相等的两个直角三角形全等。第七章 生活中的轴对称※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。※2.角平分线上的点到角两边距离相等。※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。※4.角、线段和等腰三角形是轴对称图形。※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。※6.轴对称图形上对应点所连的线段被对称轴垂直平分。※7.轴对称图形上对应线段相等、对应角相等。(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)2023-07-02 16:48:271
单项式乘以单项式的几何意义
意义就是就是单项式乘以单项式等于矩形的面积。根据查询相关公开信息可知。由数字与字母的积或字母与字母的积所组成的代数式叫做单项式。2023-07-02 16:48:461
单项式乘以单项式结果一定是单项式吗?
显然绝对是,因为是乘,不是加.加起来之后可能是单项式可能是多项式.而乘的时候字母和字母乘在一起了,数字和数字乘在一起了,成为了一个大的单项式. 祝好运:)2023-07-02 16:48:521
下列说法不正确的是( )A.两个单项式的积仍是单项式B.两个单项式的积的次数等于它们的次数之和C.
A、单项式乘以单项式,积仍是单项式,故A正确;B、单项式乘单项式积仍是单项式,次数是单项式的次数的和,故B正确;C、单项式乘以多项式用单项式乘以多项式的每一项,积与多项式的项相同,故C正确;D、多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数之积,故D错误;故选:D.2023-07-02 16:48:591
单项式乘以单项式运算法则怎样推导
应用乘法交换律与结合律,将系数与同底数幂结合,做为积的因式,单独出现的字母,连同它的指数,好是积的因式。2023-07-02 16:49:051
单项式乘以单项式 公式 单项式乘以多项式 公式多项式乘以多项式 公式
单项式乘多项式 a{a+c}=ab+ac 多项式乘多项式 {a+b}×{c+d}=ac+ad+bc+bd2023-07-02 16:49:121
单项式乘以单项式都运用了那些知识运用了哪些运算律
单项式乘以单项式都运用了:乘法交换律与乘法结合律,以及有理数相乘法则与同底数幂相乘法则。2023-07-02 16:49:221
单项式乘以单项式与同底数幂有关吗
单项式乘单项式时,特别是相同字母相乘时,会应用到同底数幂的乘法,底数不变,指数相加;所以同底数幂的乘法是学习单项式乘法的基础2023-07-02 16:49:381
单项式乘单项式指数相乘还是相加
单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。2023-07-02 16:49:451
单项式乘以单项式与单项式除以单项式是否互为逆运算?
乘除互为逆运算。2023-07-02 16:49:534
数学题(单项式乘以单项式) 要过程,好的加悬赏,谢谢~
2023-07-02 16:50:132
单项式的乘法法则是什么?请举例,急!
1.单项式与单项式相乘的法则单项式和单项式相乘,只要将它们的系数,相同字母的幂分别相乘,对于只在一个单项式中出项的字母,则连同它的指数一起作为积的一个因式.注意:单项式与单项式相乘的法则也适用于多个单项式相乘.2.单项式与多项式相乘的法则单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加.即m(a+b+c)=ma+mb+mc3.多项式与多项式相乘的法则多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即(m+n)*(a+b)=ma+mb+na+nb2023-07-02 16:50:342
单项式乘多项式的公式是什么?
A(B+C)=AB+AC单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加。法则,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。方法总结,在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。扩展资料单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式。①积的系数等于各因式系数的积,先确定符号,再计算绝对值。这时容易出现的错误是,将系数相乘与指数相加混淆。②相同字母的幂相乘,运用同底数幂的乘法运算性质。③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式。④单项式乘法法则对于三个以上的单项式相乘同样适用。⑤单项式乘以单项式,结果仍是一个单项式。2023-07-02 16:50:431
单项式乘以单项式的几何意义
建设承担单项式就相当于两个二维的数字进行计算2023-07-02 16:51:141
合并同类项和单项式乘以单项式算同一个题型吗
不算。把多项式中的同类项合并成一项,叫做合并同类项,仍是多项式。而单项式乘单项式的结果仍然是单项式,所以合并同类项和单项式乘以单项式不算同一个题型。2023-07-02 16:51:261
整式的乘法是什么?
整式的乘法是指单项式与单项式、单项式与多项式以及多项式与多项式相乘。在初中阶段,七年级数学第二章学习了整式的加减,为下一章学习一元一次方程打基础。八年级数学第十四章学习了整式的乘法,为后面学习分式打基础。整式的乘法是利用幂的运算性质和乘法的分配律进行的运算,是今后学习数学知识的基础,要求学生一定掌握。整式的乘法法则1、单项式与单项式相乘的法则。单项式和单项式相乘,只要将它们的系数,相同字母的幂分别相乘,对于只在一个单项式中出项的字母,则连同它的指数一起作为积的一个因式。注意:单项式与单项式相乘的法则也适用于多个单项式相乘。2、单项式与多项式相乘的法则。单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加。即m(a+b+c)=ma+mb+mc。3、多项式与多项式相乘的法则。多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。即(m+n)*(a+b)=ma+mb+na+nb。2023-07-02 16:51:412
单项式相乘系数要怎么样
单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式。单项式乘法法则是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。单项式乘以单项式的结果仍然是单项式。根据单项式乘法法则:是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。单项式乘以单项式的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式。2023-07-02 16:52:091
单项式乘单项式法则,急!!
系数与系数相乘,相同字母进行相乘!2023-07-02 16:52:564
单项式乘以单项式的结果是什么?
单项式乘以单项式结果还是单项式。2023-07-02 16:53:126
单项式与单项式相乘的法则是什么?
表示数学没学好→_→抱歉2023-07-02 16:53:286
单项式乘以单项式的结果是什么?
单项式乘以单项式的结果仍然是单项式。根据单项式乘法法则:是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。2023-07-02 16:54:242
单项式乘以单项式的法则
单项式乘法法则是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。 若某一变数字母只含在一个单项式里,则在乘积中这一变数字母的指数不变,这因为该变数字母的指数在另一单项式中应该认为等于零单项式乘法法则是:几个单项式相乘,首先把各个单项式的系数相乘的积作为积的系数,然后把相同变数字母的幂相乘,底数不变,指数相加的和作为积里这个变数字母的指数,将只在某一个单项式中含有的变数字母,连同它的指数作为积的一个因式写在积里,并把最后结果写成单项式的标准形式。2023-07-02 16:54:311
单项式乘以单项式法则
单项式乘以单项式法则如下:几个单项式相乘,首先把各个单项式的系数相乘的积作为积的系数,然后把相同变数字母的幂相乘,底数不变,指数相加的和作为积里这个变数字母的指数,将只在某一个单项式中含有的变数字母,连同它的指数作为积的一个因式写在积里,并把最后结果写成单项式的标准形式。在计算积的系数时,应先确定其符号,单项式乘以单项式,其结果仍然是单项式 。单项式乘法法则是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。单项式:单项式是代数学中的基础概念,由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。任何一个非零数的零次方等于1。注意:分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。单独的一个数字或字母也是单项式。如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。如果一个单项式,只含有数字因数,那么它的次数为0。2023-07-02 16:54:391
单项式乘单项式的法则
单项式乘单项式的法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。这里要注意的是单项式乘以单项式的结果仍是单项式。当有乘方运算时,先算乘方,再算单项式相乘。对于三个或三个以上的单项式相乘,单项式乘以单项式的法则仍然适用。四点注意事项要牢记,以免犯错被扣分:1、在开始计算前,可以先确定结果的符号,这个在实际教学中,很多同学会犯这样的错误,有的不带符号计算,有的带了,写结果的时候粗心漏点了,因此符号问题,我们必须要首先考虑。2、如果遇到混合运算时,一定要按运算法则来依次进行,即:先乘方开方,再乘除,最后加减。3、单个字母一定要在最后的结论中出现,千万不要随意的漏点这点,它也是积的一部分。4、计算时,千万不要出现计算出错的情况,每一步一定要写的清清楚楚,以防止出现错误,能够快速的检查所写的过程,找到错误的原因——这一点很值得大家借鉴应用,确实很实用。2023-07-02 16:55:321
单项式与单项式相乘的法则是?
单项式乘以单项式的法则:单项式乘以单项式,就是把系数和相同字母分别相乘,作为积的因式,对于只在一个单项式里出现的字母,连同它的指数作为积的一个因式。2023-07-02 16:55:391
单项式乘单项式和多项式的法则
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式。 单项式乘以单项式法则 单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式。 ①积的系数等于各因式系数的积,先确定符号,再计算绝对值。这时容易出现的错误是,将系数相乘与指数相加混淆。 ②相同字母的幂相乘,运用同底数幂的乘法运算性质。 ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式。 ④单项式乘法法则对于三个以上的单项式相乘同样适用。 ⑤单项式乘以单项式,结果仍是一个单项式。 单项式乘以多项式的运算法则 单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加。 法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。2023-07-02 16:55:471
单项式的乘法是什么?
单项式乘法法则是单项式的一种运算法则,指单项式乘以单项式,它们的积仍然是单项式,积的系数等于原来两个单项式的系数的积。它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和。若某一变数字母只含在一个单项式里,则在乘积中这一变数字母的指数不变,这因为该变数字母的指数在另一单项式中应该认为等于零。单项式乘法的运算步骤1、把它们的系数相乘,包括符号的计算。2、同底数幂相乘。3、只在一个单项式里含有的字母及其指数不变。将这三部分的乘积作为计算的结果。2023-07-02 16:56:051
单项式乘以单项式的法则
单项式乘以单项式的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式.(在计算系数时,应先确定符号,再计算绝对值,当系数为-1时,只须在结果的最前面写上“-”)2023-07-02 16:56:191
单项式乘以单项式的法则是什么
单项式乘以单项式的法则:单项式乘以单项式,就是把系数和相同字母分别相乘,作为积的因式,对于只在一个单项式里出现的字母,连同它的指数作为积的一个因式。2023-07-02 16:56:261
单项式和多项式相乘的法则
1单项式乘以单项式法则单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式。①积的系数等于各因式系数的积,先确定符号,再计算绝对值。这时容易出现的错误是,将系数相乘与指数相加混淆。②相同字母的幂相乘,运用同底数幂的乘法运算性质。③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式。④单项式乘法法则对于三个以上的单项式相乘同样适用。⑤单项式乘以单项式,结果仍是一个单项式。2单项式乘以多项式的运算法则单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加。法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。2023-07-02 16:56:331
单项式乘多项式
(-1/3)的2n次方=(1/3)的2n次方3的2n+1次方=3的2n次方*33的2n-1次方=3的2n次方*1/3整理:(1/3)的2n次方*(3的2n次方*3+3的2n次方*1/3)=(1/3)的2n次方*3的2n次方*(3+1/3)=1*(3+1/3)答案:三分之十--我做的感觉跟你的答案不一样是倒数也..2023-07-02 16:56:412
单项式乘单项式法则是如何推导的???
单项式乘以单项式的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式。(在计算系数时,应先确定符号,再计算绝对值,当系数为-1时,只须在结果的最前面写上)2023-07-02 16:56:481
单项式除以单项式与单项式乘以单项式的联系
单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式.2023-07-02 16:57:071
数学题(单项式乘以单项式)
2023-07-02 16:57:143
单项式乘以单项式应分几步?
单项式乘单项式应注意:1、前面的符号,同号取正,异号取负(同+同-为正,一+一-为负);2、次数,底数不变次数(指数)相加.多项式乘单项式应注意:1、多项式里面的每一项分别和单项式相乘;2、符号还是同号取正,异号取负;3、底数不变次数(指数)相加.2023-07-02 16:57:531