汉邦问答 / 问答 / 问答详情

怎样证明海伦公式

2023-06-28 09:55:47
Jm-R

(1)用余弦定理求出cosA,

(2)利用cosA与sinA的平方关系,求出sinA,

(3)S=(bc sinA)/2,平方后再化简,

(4)对海伦公式反向分析:先平方,将p=(a+b+c)/2代入化简

(5)将(3)与(4)两步的结果比较即可.

ps:也可以用解析几何,建系,不过太烦就是

可桃可挑

设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为   cosC = (a^2+b^2-c^2)/2ab   

S=1/2*ab*sinC   

=1/2*ab*√(1-cos^2 C)   

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]   

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]   

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]   

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]   

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]   

设p=(a+b+c)/2   

则p=(a+b+c)/2,

p-a=(-a+b+c)/2,

p-b=(a-b+c)/2,

p-c=(a+b-c)/2,   

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]   

=√[p(p-a)(p-b)(p-c)]   

所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

海伦公式如何证明?

证明:如上图根据勾股定理,得:此时化简得出海伦公式,证毕。新的方法和思路海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平。
2023-06-28 05:15:091

海伦公式的详细证明过程? 回答一定要详细,谢谢!~~

海伦公式:三角形三边为a,b,c. 其面积S=根号 其中p=(a+b+c)/2. 答:分5步: (1)用余弦定理求出cosA, (2)利用cosA与sinA的平方关系,求出sinA, (3)S=(bc sinA)/2,平方后再化简, (4)对海伦公式反向分析:先平方,将p=(a+b+c)/2代入化简, (5)将(3)与(4)两步的结果比较即可.
2023-06-28 05:15:391

海伦定律的公式是什么?如何证明(两种以上)

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=sqrt{s(s-a)(s-b)(s-c)}而公式里的s:s=frac{a+b+c}{2}由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。证明与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为cos(C)=frac{a^2+b^2-c^2}{2ab}从而有sin(C)=sqrt{1-cos^2(C)}=frac{sqrt{-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2c^2a^2}}{2ab}因此三角形的面积S为S=frac{1}{2}absin(C)=frac{1}{4}sqrt{-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2c^2a^2}=sqrt{s(s-a)(s-b)(s-c)}最后的等号部分可用因式分解予以导出。
2023-06-28 05:15:471

如何证明海伦公式?

证明:海伦公式:若ΔABC的三边长为a.b.c.则SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形.[负号[-"从a左则向右经过a.b.c".负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单.还设个什么l=(a+b=c)/2啊.多此一举!)证明:设边c上的高为h.则有√(a^2-h^2)+√(b^2-h^2)=c√(a^2-h^2)=c-√(b^2-h^2)两边平方.化简得:2c√(b^2-h^2)=b^2+c^2-a^2两边平方.化简得:h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))SΔABC=ch/2=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2仔细化简一下.得:SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4用三角函数证明!证明:SΔABC=absinC/2=ab√(1-(cosC)^2)/2----(1)∵cosC=(a^2+b^2-c^2)/(2ab)∴代入(1)式.(仔细)化简得:SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
2023-06-28 05:15:541

海伦公式是什么?怎么证明?

海伦公式就是用三角形三边长表示出三角形面积的一个公式。从三角形其中一顶点向对边作高,已知三边长,可用勾股定理列方程组表示出高,再用底乘高除以2即可证明。
2023-06-28 05:16:041

海伦公式最简单证明

海伦公式最简单证明是在△ABC中,角A、B、C所对的边分别为a、b、c,△ABC的面积为S,则S=√p(p-a)(p-b)(p-c)。海伦公式是利用三角形的三条边的边长直接求三角形面积的公式。它的特点是形式漂亮,便于记忆。相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。中国秦九韶也得出了类似的公式,称三斜求积术。海伦公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海里的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平。
2023-06-28 05:16:121

海伦公式的推导

海伦公式开放分类:数学、定理、公式、秦九韶、海伦公式海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据MorrisKline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2——————————————————————————————————————————————注:"Metrica"(《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)]和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。证明(1):与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC=(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]证明(2):我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。所谓“实”、“隅”指的是,在方程px2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4[c2a2-(c%|2+a2-b2/2)2]当P=1时,△2=q,S△=√{1/4[c2a2-(c2+a2-b2/2)2]}因式分解得1/16[(c+a)2-b2][b62-(c-a)2]=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)=p(p-a)(p-b)(p-c)由此可得:S△=√[p(p-a)(p-b)(p-c)]其中p=1/2(a+b+c)这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。S=c/2*根号下a^-{(a^-b^+c^)/2c}^.其中c>b>a.根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积这里用海伦公式的推广S圆内接四边形=根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)代入解得s=8√3
2023-06-28 05:16:302

海伦公式证明

Sabc=1/2*b*c*sinA =1/2*b*c*(1-cosA^2)^0.5 cosA=(b^2+c^2-a^2)/2ac Sabc=((p-a)(p-b)(p-c)p)^0.5
2023-06-28 05:17:5414

海伦公式是什么?

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 证明(1): 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2): 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2] 当P=1时,△ 2=q, S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]} 因式分解得 1/16[(c+a) 2-b 2][b62-(c-a) 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c) =p(p-a)(p-b)(p-c)由此可得: S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c) 这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。S=c/2*根号下a^-{(a^-b^+c^)/2c}^ .其中c>b>a.
2023-06-28 05:18:267

海伦公式

海伦公式的几种另证及其推广 关于三角形的面积计算公式在解题中主要应用的有: 设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c),则 S△ABC = aha= ab×sinC = r p = 2R2sinAsinBsinC = = 其中,S△ABC = 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。 海伦公式在解题中有十分重要的应用。 一、 海伦公式的变形 S= = ① = ② = ③ = ④ = ⑤ 二、 海伦公式的证明 证一 勾股定理 分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。 证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴ S△ABC = aha= a× = 此时S△ABC为变形④,故得证。 证二:斯氏定理 分析:在证一的基础上运用斯氏定理直接求出ha。 斯氏定理:△ABC边BC上任取一点D, 若BD=u,DC=v,AD=t.则 t 2 = 证明:由证一可知,u = v = ∴ ha 2 = t 2 = - ∴ S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。 证三:余弦定理 分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。 证明:要证明S = 则要证S = = = ab×sinC 此时S = ab×sinC为三角形计算公式,故得证。 证四:恒等式 分析:考虑运用S△ABC =r p,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。 恒等式:若∠A+∠B+∠C =180○那么 tg · tg + tg · tg + tg · tg = 1 证明:如图,tg = ① tg = ② tg = ③ 根据恒等式,得: + + = ①②③代入,得: ∴r2(x+y+z) = xyz ④ 如图可知:a+b-c = (x+z)+(x+y)-(z+y) = 2x ∴x = 同理:y = z = 代入 ④,得: r 2 · = 两边同乘以 ,得: r 2 · = 两边开方,得: r · = 左边r · = r·p= S△ABC 右边为海伦公式变形①,故得证。 证五:半角定理 半角定理:tg = tg = tg = 证明:根据tg = = ∴r = × y ① 同理r = × z ② r = × x ③ ①×②×③,得: r3 = ×xyz
2023-06-28 05:19:272

海伦公式如何证明?

用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC=(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:19:351

海伦公式

海伦公式的几种另证及其推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c),则S△ABC = aha= ab×sinC = r p= 2R2sinAsinBsinC = = 其中,S△ABC = 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。海伦公式在解题中有十分重要的应用。一、 海伦公式的变形S= = ①= ②= ③= ④= ⑤二、 海伦公式的证明证一 勾股定理分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。证明:如图ha⊥BC,根据勾股定理,得:x = y = ha = = = ∴ S△ABC = aha= a× = 此时S△ABC为变形④,故得证。证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t 2 = 证明:由证一可知,u = v = ∴ ha 2 = t 2 = - ∴ S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。证三:余弦定理分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。证明:要证明S = 则要证S = = = ab×sinC此时S = ab×sinC为三角形计算公式,故得证。证四:恒等式分析:考虑运用S△ABC =r p,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。恒等式:若∠A+∠B+∠C =180○那么tg · tg + tg · tg + tg · tg = 1证明:如图,tg = ①tg = ②tg = ③根据恒等式,得:+ + = ①②③代入,得: ∴r2(x+y+z) = xyz ④ 如图可知:a+b-c = (x+z)+(x+y)-(z+y) = 2x∴x = 同理:y = z = 代入 ④,得: r 2 · = 两边同乘以 ,得: r 2 · = 两边开方,得: r · = 左边r · = r·p= S△ABC 右边为海伦公式变形①,故得证。证五:半角定理半角定理:tg = tg = tg = 证明:根据tg = = ∴r = × y ①同理r = × z ② r = × x ③①×②×③,得: r3 = ×xyz
2023-06-28 05:19:573

海伦公式式

2023-06-28 05:20:073

求海伦公式的证明

海伦公式的几种另证及其推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p=(a+b+c),则S△ABC=aha=ab×sinC=rp=2R2sinAsinBsinC==其中,S△ABC=就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。海伦公式在解题中有十分重要的应用。一、海伦公式的变形S==①=②=③=④=⑤二、海伦公式的证明证一勾股定理分析:先从三角形最基本的计算公式S△ABC=aha入手,运用勾股定理推导出海伦公式。证明:如图ha⊥BC,根据勾股定理,得:x=y=ha===∴S△ABC=aha=a×=此时S△ABC为变形④,故得证。证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t2=证明:由证一可知,u=v=∴ha2=t2=-∴S△ABC=aha=a×=此时为S△ABC的变形⑤,故得证。证三:余弦定理分析:由变形②S=可知,运用余弦定理c2=a2+b2-2abcosC对其进行证明。证明:要证明S=则要证S===ab×sinC此时S=ab×sinC为三角形计算公式,故得证。证四:恒等式分析:考虑运用S△ABC=rp,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。恒等式:若∠A+∠B+∠C=180○那么tg·tg+tg·tg+tg·tg=1证明:如图,tg=①tg=②tg=③根据恒等式,得:++=①②③代入,得:∴r2(x+y+z)=xyz④如图可知:a+b-c=(x+z)+(x+y)-(z+y)=2x∴x=同理:y=z=代入④,得:r2·=两边同乘以,得:r2·=两边开方,得:r·=左边r·=r·p=S△ABC右边为海伦公式变形①,故得证。证五:半角定理半角定理:tg=tg=tg=证明:根据tg==∴r=×y①同理r=×z②r=×x③①×②×③,得:r3=×xyz
2023-06-28 05:20:211

如何证明海伦公式?

如何证明海伦公式?海伦公式:三角形三边为a,b,c.其面积S=根号 其中p=(a+b+c)/2.答:分5步:(1)用余弦定理求出cosA,(2)利用cosA与sinA的平方关系,求出sinA,(3)S=(bc sinA)/2,平方后再化简,(4)对海伦公式反向分...
2023-06-28 05:20:311

数学海伦—秦九韵公式怎么回事啊?我怎么看不懂?

海伦公式的几种另证及其推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p=(a+b+c),则S△ABC=aha=ab×sinC=rp=2R2sinAsinBsinC==其中,S△ABC=就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。海伦公式在解题中有十分重要的应用。一、海伦公式的变形S==①=②=③=④=⑤二、海伦公式的证明证一勾股定理分析:先从三角形最基本的计算公式S△ABC=aha入手,运用勾股定理推导出海伦公式。证明:如图ha⊥BC,根据勾股定理,得:x=y=ha===∴S△ABC=aha=a×=此时S△ABC为变形④,故得证。证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t2=证明:由证一可知,u=v=∴ha2=t2=-∴S△ABC=aha=a×=此时为S△ABC的变形⑤,故得证。证三:余弦定理分析:由变形②S=可知,运用余弦定理c2=a2+b2-2abcosC对其进行证明。证明:要证明S=则要证S===ab×sinC此时S=ab×sinC为三角形计算公式,故得证。证四:恒等式分析:考虑运用S△ABC=rp,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。恒等式:若∠A+∠B+∠C=180○那么tg·tg+tg·tg+tg·tg=1证明:如图,tg=①tg=②tg=③根据恒等式,得:++=①②③代入,得:∴r2(x+y+z)=xyz④如图可知:a+b-c=(x+z)+(x+y)-(z+y)=2x∴x=同理:y=z=代入④,得:r2·=两边同乘以,得:r2·=两边开方,得:r·=左边r·=r·p=S△ABC右边为海伦公式变形①,故得证。证五:半角定理半角定理:tg=tg=tg=证明:根据tg==∴r=×y①同理r=×z②r=×x③①×②×③,得:r3=×xyz
2023-06-28 05:20:391

海伦公式如何证明?

用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:20:481

如何推导海伦公式

cosC = (a^2+b^2-c^2)/2ab   S=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)   =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]   =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]   =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]   =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]   =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]   设p=(a+b+c)/2   则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,   上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]   =√[p(p-a)(p-b)(p-c)]
2023-06-28 05:21:111

数学秦九韶公式的说明与推广

根据海伦-秦九韶公式,我们可以将其继续推广至四边形的面积运算。如下题:已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积这里用海伦公式的推广S圆内接四边形=根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)代入解得s=8√3[编辑本段]推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p=(a+b+c)/2,则S△ABC=1/2aha=1/2ab×sinC=1/2rp=2R2sinAsinBsinC=√[p(p-a)(p-b)(p-c)]其中,S△ABC=√[p(p-a)(p-b)(p-c)]就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。[编辑本段]海伦公式在解题中有十分重要的应用。一、海伦公式的证明证一勾股定理如右图勾股定理证明海伦公式。证二:斯氏定理如右图。斯氏定理证明海伦公式证三:余弦定理分析:由变形②S=可知,运用余弦定理c2=a2+b2-2abcosC对其进行证明。证明:要证明S=则要证S===ab×sinC此时S=ab×sinC/2为三角形计算公式,故得证。证四:恒等式恒等式证明(1)恒等式证明(2)证五:半角定理∵由证一,x==-c=p-cy==-a=p-az==-b=p-b∴r3=∴r=∴S△ABC=r·p=故得证。二、海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p=,则S四边形=现根据猜想进行证明。证明:如图,延长DA,CB交于点E。设EA=eEB=f∵∠1+∠2=180○∠2+∠3=180○∴∠1=∠3∴△EAB~△ECD∴===解得:e=①f=②由于S四边形ABCD=S△EAB将①,②跟b=代入公式变形④,得:∴S四边形ABCD=所以,海伦公式的推广得证。[编辑本段]例题:如图,四边形ABCD内接于圆O中,SABCD=,AD=1,AB=1,CD=2.求:四边形可能为等腰梯形。解:设BC=x由海伦公式的推广,得:(4-x)(2+x)2=27x4-12x2-16x+27=0x2(x2—1)-11x(x-1)-27(x-1)=0(x-1)(x3+x2-11x-27)=0x=1或x3+x2-11x-27=0当x=1时,AD=BC=1∴四边形可能为等腰梯形。在程序中实现(VBS):dima,b,c,p,q,sa=inputbox("请输入三角形第一边的长度")b=inputbox("请输入三角形第二边的长度")c=inputbox("请输入三角形第三边的长度")a=1*ab=1*bc=1*cp=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c)q=sqr(p)s=(1/4)*qmsgbox("三角形面积为"&s),,"三角形面积"在VC中实现#include<stdio.h>#include<math.h>main(){inta,b,c,s;printf("输入第一边 ");scanf("%d",&a);printf("输入第二边 ");scanf("%d",&b);printf("输入第三边 ");scanf("%d",&c);s=(a+b+c)/2;printf("面积为:%f ",sqrt(s*(s-a)*(s-b)*(s-c)));}海伦公式
2023-06-28 05:22:161

海伦公式如何运用于多边形的面积

与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为 cos(C) = frac{a^2+b^2-c^2}{2ab} 从而有 sin(C) = sqrt{1-cos^2(C)} = frac{ sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab} 因此三角形的面积S为 S = frac{1}{2}ab sin(C) = frac{1}{4}sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} = sqrt{s(s-a)(s-b)(s-c)} 最后的等号部分可用因式分解予以导出。 已知三角形的三条边长分别是a、b、c,则三角形的面积: △=根号下s(s-a)(s-b)(s-c) 其中s=1/2(a+b+c) 这个公式叫海伦公式〔Heron"s Formula〕。 海伦公式出现在海伦的《测地术》一书中。此公式人们一直归功于海伦。但范德瓦尔登支持贝尔的主张,认为此公式实际上是阿基米德〔前287-前212〕发现的。不过在海伦的《经纬仪》和《度量》两书中都有一个证明。 我国大数学家秦九韶〔1022-1261〕在他写的《数书九章》〔成书于1247〕的第五卷《田域类》第二题「三斜求积」中所用的公式本质上与海伦公式是相同的,其意义就是:设三角形的三边分别为a,b,c,面积为Δ,则 Δ=根号下1/4{a2b2-{(a2+b2-c2)/2]2} 这个公式与海伦公式是等价的。
2023-06-28 05:22:251

三角形面积公式怎么来的?

任何一个三角形我们都可以把它补成一个平行四边形,此时可以证明对角线所分的两个三角形是全等的,所以三角形的面积是平行四边形的一半啰,平行四边形的面积=底×高,所以三角形的面积=1/2平行四边形的面积=1/2底×高
2023-06-28 05:22:361

证明海伦公式,不用图上的方法,谢谢

可以用勾股定理证明过程直接看链接吧 http://baike.baidu.com/view/1279.htm
2023-06-28 05:22:461

海伦定理的证明(图文)

在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为 cos(C) = frac{a^2+b^2-c^2}{2ab} 从而有 sin(C) = sqrt{1-cos^2(C)} = frac{ sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab} 因此三角形的面积S为 S = frac{1}{2}ab sin(C) = frac{1}{4}sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} = sqrt{s(s-a)(s-b)(s-c)} 最后的等号部分可用因式分解予以导出
2023-06-28 05:23:151

秦九韶公式怎样推导出海伦公式?

先证三角形的另一个面积公式s=(ab*sinc)/2(作高再用s=ab/2即可证明)..........(1)再证余弦定理c^2=a^2+b^2-2ab*cosc............................(2)根据公式(sinc)^2+(cosc)^2=1...........................(3)由(2),(3)把sinc用a,b,c表示出来再代入(1)即可得出秦九韶--海伦公式
2023-06-28 05:23:271

急求海伦公式证明过程

(1)用余弦定理求出cosA,(2)利用cosA与sinA的平方关系,求出sinA,(3)S=(bcsinA)/2,平方后再化简,(4)对海伦公式反向分析:先平方,将p=(a+b+c)/2代入化简,(5)将(3)与(4)两步的结果比较即可
2023-06-28 05:23:352

海伦公式的证明有一步不懂了,呜……

有点像平方差公式呀……。不清楚~~
2023-06-28 05:23:431

知道三边长,求三角形面积。公式及其推导过程。

海伦公式,可利用三角形的三条边长来求取三角形面积。假设三角形边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p=(a+b+c)/2
2023-06-28 05:24:032

向量法证明三角形面积的海伦公式

海伦公式:只要已知三角形的三条边长,就可以求三角形的面积。公式:若已知三角形的三条边长分别为a、b、c,S=根号下p(p-a)(p-b)(p-c)(p为三角形周长的一半,即p=1/2(a+b+c))
2023-06-28 05:24:272

等p正三角形的面积最大 怎么用海伦公式和不等式证明?

海伦公式:S=√[p*(p-a)*(p-b)*(p-c)]p一定,只考虑(p-a)*(p-b)*(p-c)的最大值首先显然有p>a,p>b,p>c由平均值不等式(p-a)*(p-b)*(p-c)≤[(p-a+p-b+p-c)/3]^3=(p/3)^3由均值不等式的取等条件知p-a=p-b=p-c即a=b=c时,面...
2023-06-28 05:24:361

海伦公式证明

请在此输入您的回答,每一次专业解答都将打造您的权威形象
2023-06-28 05:24:461

海伦公式在证明题中可以运用吗

如果你在参加中考的时候解题的话,其实是可以使用海伦公式的,因为海伦公式,他其实在中考的时候就已经去学过了,并且,中海伦公式,他本来就是一个特殊的一个定理,所以你是可以直接去进行运用的,如果你知道了的话,所以在中考解答题的时候,当然可以去用海伦公式。
2023-06-28 05:25:011

几何法证明海伦公式中,不明白为什么BD=P-b?

AE=AFBD=BFCE=CD∴ BD=BF=(a+c-b)÷2=(a+c+b)÷2-b=P-b
2023-06-28 05:25:551

请用正余弦定理证明海伦公式

设三角形的三边a、b、c的对角分别为A、B、C,则由余弦定理:cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:26:041

海伦公式的证明方法是什么?

用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:26:303

海伦公式证明了什么?

证明:如上图根据勾股定理,得:此时化简得出海伦公式,证毕。新的方法和思路海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平。
2023-06-28 05:26:381

如何证明海伦公式

证明:海伦公式:若ΔABC的三边长为a.b.c.则SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形.[负号[-"从a左则向右经过a.b.c".负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单.还设个什么l=(a+b=c)/2啊.多此一举!)证明:设边c上的高为h.则有√(a^2-h^2)+√(b^2-h^2)=c√(a^2-h^2)=c-√(b^2-h^2)两边平方.化简得:2c√(b^2-h^2)=b^2+c^2-a^2两边平方.化简得:h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))SΔABC=ch/2=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2仔细化简一下.得:SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4用三角函数证明!证明:SΔABC=absinC/2=ab√(1-(cosC)^2)/2----(1)∵cosC=(a^2+b^2-c^2)/(2ab)∴代入(1)式.(仔细)化简得:SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
2023-06-28 05:27:111

海伦公式怎么证明?

啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊阿啊啊啊啊阿啊啊啊啊啊啊
2023-06-28 05:27:213

海伦公式的证明是什么?

海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据morriskline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。具体证明方法很麻烦,请登录http://baike.baidu.com/view/1279.html?wtp=tt就行了
2023-06-28 05:27:351

海伦公式怎么证明?

海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据morriskline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。具体证明方法很麻烦,请登录http://baike.baidu.com/view/1279.html?wtp=tt就行了
2023-06-28 05:28:491

海伦公式的证明过程

证明:如上图根据勾股定理,得:此时化简得出海伦公式,证毕。新的方法和思路海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平。
2023-06-28 05:28:561

如何证明海伦公式?

如何证明海伦公式?海伦公式:三角形三边为a,b,c.其面积S=根号其中p=(a+b+c)/2。答:分5步:(1)用余弦定理求出cosA,(2)利用cosA与sinA的平方关系,求出sinA,(3)S=(bcsinA)/2,平方后再化简,(4)对海伦公式反向分析:先平方,将p=(a+b+c)/2代入化简,(5)将(3)与(4)两步的结果比较即可.
2023-06-28 05:29:261

海伦公式是什么?怎么证明?

海伦公式就是用三角形三边长表示出三角形面积的一个公式。从三角形其中一顶点向对边作高,已知三边长,可用勾股定理列方程组表示出高,再用底乘高除以2即可证明。
2023-06-28 05:30:501

什么是海伦公式以及他的详细证明

海伦公式的几种另证及其推广 关于三角形的面积计算公式在解题中主要应用的有: 设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c),则 S△ABC = aha= ab×sinC = r p = 2R2sinAsinBsinC = = 其中,S△ABC = 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。 海伦公式在解题中有十分重要的应用。 一、 海伦公式的变形 S= = ① = ② = ③ = ④ = ⑤ 二、 海伦公式的证明 证一 勾股定理 分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。 证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴ S△ABC = aha= a× = 此时S△ABC为变形④,故得证。 证二:斯氏定理 分析:在证一的基础上运用斯氏定理直接求出ha。 斯氏定理:△ABC边BC上任取一点D, 若BD=u,DC=v,AD=t.则 t 2 = 证明:由证一可知,u = v = ∴ ha 2 = t 2 = - ∴ S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。 证三:余弦定理 分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。 证明:要证明S = 则要证S = = = ab×sinC 此时S = ab×sinC为三角形计算公式,故得证。 证四:恒等式 分析:考虑运用S△ABC =r p,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。 恒等式:若∠A+∠B+∠C =180○那么 tg · tg + tg · tg + tg · tg = 1 证明:如图,tg = ① tg = ② tg = ③ 根据恒等式,得: + + = ①②③代入,得: ∴r2(x+y+z) = xyz ④ 如图可知:a+b-c = (x+z)+(x+y)-(z+y) = 2x ∴x = 同理:y = z = 代入 ④,得: r 2 · = 两边同乘以 ,得: r 2 · = 两边开方,得: r · = 左边r · = r·p= S△ABC 右边为海伦公式变形①,故得证。 证五:半角定理 半角定理:tg = tg = tg = 证明:根据tg = = ∴r = × y ① 同理r = × z ② r = × x ③ ①×②×③,得: r3 = ×xyz
2023-06-28 05:30:581

海伦公式是什么?怎么证明?

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 证明:在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:31:162

海伦公式的推导过程?

http://baike.baidu.com/view/1279.htm
2023-06-28 05:31:275

怎样证明著名的“海伦公式”??

设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为  cosC=(a^2+b^2-c^2)/2ab  S=1/2*ab*sinC  =1/2*ab*√(1-cos^2C)  =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]  =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]  =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]  =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]  =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]  设p=(a+b+c)/2  则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,  上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]  =√[p(p-a)(p-b)(p-c)]  所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:33:072

海伦公式是什么

海伦公式的几种另证及其推广关于三角形的面积计算公式在解题中主要应用的有:设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p=(abc),则S△ABC=aha=ab×sinC=rp=2R2sinAsinBsinC==其中,S△ABC=就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。海伦公式在解题中有十分重要的应用。一、海伦公式的变形S==①=②=③=④=⑤二、海伦公式的证明证一勾股定理分析:先从三角形最基本的计算公式S△ABC=aha入手,运用勾股定理推导出海伦公式。证明:如图ha⊥BC,根据勾股定理,得:x=y=ha===∴S△ABC=aha=a×=此时S△ABC为变形④,故得证。证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t2=证明:由证一可知,u=v=∴ha2=t2=-∴S△ABC=aha=a×=此时为S△ABC的变形⑤,故得证。证三:余弦定理分析:由变形②S=可知,运用余弦定理c2=a2b2-2abcosC对其进行证明。证明:要证明S=则要证S===ab×sinC此时S=ab×sinC为三角形计算公式,故得证。证四:恒等式分析:考虑运用S△ABC=rp,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。恒等式:若∠A∠B∠C=180○那么tg·tgtg·tgtg·tg=1证明:如图,tg=①tg=②tg=③根据恒等式,得:=①②③代入,得:∴r2(xyz)=xyz④如图可知:a+b-c=(xz)+(xy)-(zy)=2x∴x=同理:y=z=代入④,得:r2·=两边同乘以,得:r2·=两边开方,得:r·=左边r·=r·p=S△ABC右边为海伦公式变形①,故得证。证五:半角定理半角定理:tg=tg=tg=证明:根据tg==∴r=×y①同理r=×z②r=×x③①×②×③,得:r3=×xyz∵由证一,x==-c=p-cy==-a=p-az==-b=p-b∴r3=∴r=∴S△ABC=r·p=故得证。三、海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p=,则S四边形=现根据猜想进行证明。证明:如图,延长DA,CB交于点E。设EA=eEB=f∵∠1∠2=180○∠2∠3=180○∴∠1=∠3∴△EAB~△ECD∴===解得:e=①f=②由于S四边形ABCD=S△EAB将①,②跟b=代入公式变形④,得:∴S四边形ABCD===========所以,海伦公式的推广得证。四、海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍。例题:如图,四边形ABCD内接于圆O中,SABCD=,AD=1,AB=1,CD=2.求:四边形可能为等腰梯形。解:设BC=x由海伦公式的推广,得:=(4-x)(2+x)2=27x4-12x2-16x+27=0x2(x2—1)-11x(x-1)-27(x-1)=0(x-1)(x3+x2-11x-27)=0x=1或x3+x2-11x-27=0当x=1时,AD=BC=1∴四边形可能为等腰梯形。
2023-06-28 05:33:182

海伦公式的证明过程有谁知道?

用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:33:262

海伦公式如何证明?

用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC=(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
2023-06-28 05:33:351

海伦公式是什么?怎么证明?

海伦公式就是用三角形三边长表示出三角形面积的一个公式. 从三角形其中一顶点向对边作高,已知三边长,可用勾股定理列方程组表示出高,再用底乘高除以2即可证明.
2023-06-28 05:33:421