汉邦问答 / 问答 / 问答详情

用wls法且选择权数变量为1/x对模型修正后,解释变量的系数是多少

2023-06-10 08:54:52
Ntou123

1. 因子分析模型因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法.它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子.对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量.因子分析的基本思想:把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下:(1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现).(2)F = (F1,F2,…,Fm)¢ (mp)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的.(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:x1 = a11F1+ a12F2 +…+a1mFm + e1x2 = a21F1+a22F2 +…+a2mFm + e2………xp = ap1F1+ ap2F2 +…+apmFm + ep称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型.其矩阵形式为: x =AF + e .其中:x=,A=,F=,e=这里,(1)m £ p;(2)Cov(F,e)=0,即F和e是不相关的;(3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;D(e)=,即e1,e2,…,ep不相关,且方差不同.我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子.A = (aij),aij为因子载荷.数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性.2. 模型的统计意义模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量.公共因子的含义,必须结合具体问题的实际意义而定.e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的.模型中载荷矩阵A中的元素(aij)是为因子载荷.因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度.可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大.为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献.因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度.它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响.hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大.将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献.gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标.gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大.如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子.3. 因子旋转建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析.如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子.旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法.最常用的方法是最大方差正交旋转法(Varimax).进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小.因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转.常用的斜交旋转方法有Promax法等.4.因子得分因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价.例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等.这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分.设公共因子F由变量x表示的线性组合为:Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m该式称为因子得分函数,由它来计算每个样品的公共因子得分.若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究.但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计.估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法.(1)回归估计法F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X ).(2)Bartlett估计法Bartlett估计因子得分可由最小二乘法或极大似然法导出.F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X(3)Thomson估计法在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有:F = XR-1A¢ = X (X ¢X+W)-1A¢这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为:F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢5. 因子分析的步骤因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释.因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的.(i)因子分析常常有以下四个基本步骤:(1)确认待分析的原变量是否适合作因子分析.(2)构造因子变量.(3)利用旋转方法使因子变量更具有可解释性.(4)计算因子变量得分.(ii)因子分析的计算过程:(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同.(2)求标准化数据的相关矩阵;(3)求相关矩阵的特征值和特征向量;(4)计算方差贡献率与累积方差贡献率;(5)确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;(6)因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义.(7)用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分.(8)综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数.F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率.(9)得分排序:利用综合得分可以得到得分名次.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:· 简化系统结构,探讨系统内核.可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响.逗从树木看森林地,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核.· 构造预测模型,进行预报控制.在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的.在多元分析中,用于预报控制的模型有两大类.一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术.另一类是描述性模型,通常采用聚类分析的建模技术.· 进行数值分类,构造分类模式.在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类.以便找出它们之间的联系和内在规律性.过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征.进行数值分类,构造分类模式一般采用聚类分析和判别分析技术.如何选择适当的方法来解决实际问题,需要对问题进行综合考虑.对一个问题可以综合运用多种统计方法进行分析.例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际.Rotated Component Matrix,就是经转轴后的因子负荷矩阵, 当你设置了因子转轴后,便会产生这结果. 转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名. SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框, 其中有5种因子旋转方法可选择: 1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少. 2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少. 3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大. 4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-products)最小化. 5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴.因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性. 上述前三者属於「直交(正交)转轴法」(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等於90 度.后两者属於「斜交转轴」(oblique rotations),表示因子与因子之间彼此有某种程度的相关,因素轴之间的夹角不是90度. 直交转轴法的优点是因子之间提供的讯息不会重叠,受访者在某一个因子的分数与在其他因子的分数,彼此独立互不相关;缺点是研究迫使因素之间不相关,但这种情况在实际的情境中往往并不常存在.至於使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定. 在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义.2,主成分分析(principal component analysis) 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法.又称主分量分析.在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息.但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息.主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形.信息的大小通常用离差平方和或方差来衡量. (1)主成分分析的原理及基本思想.原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法.基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标.最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多.因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分.如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分.(2)步骤Fp=a1mZX1+a2mZX2+……+apmZXp其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化].A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 .进行主成分分析主要步骤如下:1. 指标数据标准化(SPSS软件自动执行);2. 指标之间的相关性判定;3. 确定主成分个数m;4. 主成分Fi表达式;5. 主成分Fi命名;选用以上两种方法时的注意事项如下:1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合.2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差.3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设.因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关.4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子.5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同.在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分.和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势.大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释.而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析.当然,这中情况也可以使用因子得分做到.所以这中区分不是绝对的.总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据.(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化.(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性.在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分).(1)了解如何通过SPSS因子分析得出主成分分析结果.首先,选择SPSS中Analyze-Data Reduction-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析.打开输出结果窗口后找到Total Variance Explained表和Component Matrix表.将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式.打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量.点击Options,只构选Means,点确定后既得待分析变量的标准化新变量.选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分.通过对主成分得分的排序即可进行各个个案的综合评价.很显然,这里的过程分为四个步骤:Ⅰ.选主成分方法提取因子进行因子分析.Ⅱ.计算主成分表达式系数.Ⅲ.标准化数据.Ⅳ.计算主成分得分.我们的程序也将依该思路展开开发.(2)对为何要将Component Matrix表数据除以特征根开方的解释我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵.而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算. 成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式.3,聚类分析(Cluster Analysis)聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 .在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作.4.判别分析(Discriminatory Analysis)判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体.根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法.费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理.选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值.对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大.贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断.所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率.它是对先验概率修正后的结果.距离判别思想是根据各样品与各母体之间的距离远近作出判别.即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体.5.对应分析(Correspondence Analysis)对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术.运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象.这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息.

高二数学解释变量和预报变量

选B,高中的话如果你读完大学,选C高中强调自变量是x,就是这里的解释变量,只是一种约定俗成,不知道你理解不
2023-06-10 02:04:553

预报变量是真实值yi吗?

预报变量是真实值,姨妈那个流量是不是真是之一,你可以上百度或者是嗯个各大网站就可以去查就知道了。
2023-06-10 02:05:0714

解释变量和预报变量是什么关系

回归模型中,预报变量与解释变量呈相关关系, 故预报变量的值与解释变量有关,故B错误; 而回归模型中,回归系数的求解,受到随机误差的总效应的影响, 故预报变量的值与随机误差也有关
2023-06-10 02:05:321

预报变量由什么决定

由回归分析可知,在进行回归分析时,预报变量的变化由解释变量与残差变量决定. 故选:C
2023-06-10 02:05:391

解释变量和预报变量是什么

1、在回归分析中,自变量x称为解释变量,因变量y称为预报变量。影响研究对象的变量。2、它解释了研究对象的变动,表现为方程所描述因果关系中的因(即回归分析中的自变量)。回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
2023-06-10 02:05:491

预报变量是响应变量吗

不是。随机变量称为因变量或响应变量,只能观测但不能控制。普通变量称为自变量或解释变量或预报变量或设计变量,是可控变量,根据需要预先确定,所以说预报变量并不是响应变量。预报变量的变化能波及另一些变量,这样的变量称为因变量,或响应变量。
2023-06-10 02:05:581

预报变量是响应变量吗

是。预报响应值预报响应值predictedresponse简称预报值。是根据所建立的回归方程由自变量值二来预估因变量y的值。
2023-06-10 02:06:051

什么是解释变量和预报变量

在回归分析中,自变量x称为解释变量,因变量y称为预报变量.
2023-06-10 02:06:121

预报变量y怎么读?

外(wai四声)
2023-06-10 02:06:191

高二数学解释变量和预报变量

ewe
2023-06-10 02:06:413

在线性回归模型中,预报变量y与解释变量x唯一确定吗?

这是由你自己选的啊,你需要根据自己想要研究的问题挑选y和x,没有说你一定要挑某些变量,往往在一个问题中,y是确定的,x可能有很多选择的可能,我们都可以一一尝试。
2023-06-10 02:06:501

样本都在一条直线上,请问:请解释变量和预报变量之

(1)解释变量和预报变量是一次函数关系;残差平方和是0; (2)相关指数是1.
2023-06-10 02:06:581

若对于预报变量y与解释变量x的10组统计数据的回归模型中,计算R 2 =0.95,又知残差平方和为120.55,那么

C. 试题分析:设 ,根据条件残差平方和为 ,即 由公式 ,可得 .
2023-06-10 02:07:101

如果散点图中所有的样本点都在一条直线上,则解释变量和预报变量之间的相关系数是?

相关系数的绝对值越接近1,即1或-1,两个变量的线性相关关系越强,它们的散点图越接近一条直线
2023-06-10 02:07:521

如果散点图中的所有样本都在一条直线上,解释变量和预报变量是什么关系?

线性相关关系。
2023-06-10 02:08:001

给出以下四个命题:①在回归直线方程 y =0.2x+12中,当解释变量x每增加一个单位时,预报变

在回归直线方程 y =0.2x+12中,当解释变量x每增加一个单位时,预报变量 y 平均增加0.2个单位,故①错误;根据残差的定义,在回归分析中,残差平方和越小,则相关关系越强,拟合效果越好,故②正确;在回归分析中,回归直线过样本点中心( . x , . y )点,故③正确;对分类变量X与Y,它们的随机变量K 2 (χ 2 )的观测值k来说,k越小,“X与Y有关系”的把握程度越小,k越大,“X与Y有关系”的把握程度越大.故④错误,故答案为:②③
2023-06-10 02:08:081

如果所有样本点都落在一条直线上, 残差平方和以及解释变量和预报变量间的相关系数分别为 [ ]

1、相关系数:,当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关;|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小。2、残差:相关指数r2用来刻画回归的效果,其计算公式是,在含有一个解释变量的线性模型中,r2恰好等于相关系数r的平方。显然,r2取值越大,意味着残差平方和越小,也就是模型的拟合效果越好。
2023-06-10 02:08:161

给出以下四个说法:①残差点分布的带状区域的宽度越窄相关指数越小②在刻画回归模型的拟合效果时,相关指

在做回归分析时,残差图中残差点分布的带状区域的宽度越窄,说明拟合精度越高,相关指数的绝对值越接近1,而不是越小,故①错误;②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②正确.③在回归直线方程y=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2个单位,故正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越小,k越大,“X与Y有关系”的把握程度越大.故④错误
2023-06-10 02:08:231

若散点图中所有样本点都在一条直线上,解释变量与预报变量的相关系数为(   )

D
2023-06-10 02:08:412

给出下列四个命题,其中正确的一个是(  )A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释

用相关系数r可以衡量两个变量之间的相关关系的强弱,根据“相关指数R2=0.80”并不能说明预报变量对解释变量的贡献率是80%,故A错;对于B:由独立性检验知识知两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量有关系成立的可能性就越大,故B错;对于C:用相关指数R2来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好,故其不正确;对于D:随机误差e是衡量预报精确度的一个量,它满足E(e)=0是正确的.综上可知D正确,故选D.
2023-06-10 02:08:591

关于高中数学中的统计学!

高中数学必修三有详细说明,可以自学
2023-06-10 02:09:064

最小二乘法求线性回归方程

“最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程。该方法适用于求解不线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值 等。破解此类问题的关键点如下: 析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是 否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造 线性相关关系. 建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型.具体求法:第一步:求出变量x的平均值 第二步:求出变量y的平均值 第三步:求出系数b 第四步:求出截距a回顾UI直线方程如下图:
2023-06-10 02:09:151

独立性检验,适用于检查 变量之间的关系( ) A.线性 B.非线性 C.解释与预报 D.分

D 试题分析:根据实际问题中情况,那么独立性检验,适用于检查分类变量之间的关系,而不是线性变量和解释与预报变量之间的关系故选D.点评:考查了独立性检验的思想的运用,属于基础题。
2023-06-10 02:09:391

样本适用范围及时限

①回归方程只适用于我们所研究的样本的总体,并非适用于一切样本和总体;①错. ②回归方程一般都有时间性,例如不能用20世纪80年代的身高、体重数据所建立的回归方程,描述现在的身高和体重的关系.②对 ③样本取值的范围会影响回归方程的适用范围;例如我们的回归方程是由大人身高、体重数据所建立的,用它来描述一个人幼儿时期的身高与体重的关系就不恰当.③对 ④回归方程得到的预报值是预报变量的可能取值的平均值.④错 综上所述,②③ 故选B
2023-06-10 02:09:461

在回归分析中,下列关于R2的描述不正确的是(  )A.R2越大,意味着模型拟合的效果越好B.R2表示解释变

A、相关指数R2可以刻画回归模型的拟合效果,R2越接近于1,说明模型的拟合效果越好;故A正确.B、在线性回归模型中,R2表示解释变量对预报变量的贡献率;故B正确.C、R2越接近于1,表示解释变量和预报变量的线性相关关系越强;故C正确.D、若残差图中个别点的残差比较大,则应确认在采集样本点的过程中是否有人为的错误或模型是否恰当,故R2越接近于1,表明残差平方和越小,故D不正确.故选:D
2023-06-10 02:09:551

以下四个命题中错误的是(  )A.已知随机变量X~N(2,9)P(X>c+1)=P(X<c+1),则c=1B.两个随机

∵正态曲线关于x=2对称,且P(X>c+1)=P(X<c+1),∴c+1+c+1=2×2,解得c=1,故A正确;两个随机变量相关性越强,则相关系数r的绝对值越接近于1,故B正确;在回归直线方程∧y=0.2x+12中,当解释变量x每增加一个单位时,预报变量∧y平均增加0.2个单位,故C正确;对分类变量X与Y的随机变量K2的观测值k,k越大,“X与Y有关系”的把握程度越大,故D错误;故选:D
2023-06-10 02:10:061

比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型,拟

比较两个模型的拟合效果,可以通过比较它们的残差平方和的大小来确定,残差平方和越小的模型,拟合效果越好,故A错误; 在残差图中,残差点所在的带状区域的宽度越窄,拟合效果越好,故B正确;C错误; 通过回归方程得到的预报值就是预报变量的估计值,故C错误; 故选:B
2023-06-10 02:10:371

解释变量增加一个单位

x变为x+1,则y由0.2x+16变为0.2(x+1)+16=0.2x+16.2,所以y增加了0.2个单位. 你的y-0.引起变化的是x,所以应该从改变x入手
2023-06-10 02:10:451

以下五个命题:①标准差越小,则反映样本数据的离散程度越大; ②两个随机变量相关性越强,则相关系数越

根据标准差越大,则反映样本数据的离散程度越大,∴①错误;根据两个随机变量相关性越强,则相关系数的绝对值越接近1,∴②错误;根据回归直线方程的系数,判断③正确;∵随机变量K2的观测值k越大,“X与Y有关系”的把握程度越大,∴④错误;根据回归分析基本思想,残差平方和越小,拟合效果越好,∴⑤正确.故答案是③⑤
2023-06-10 02:10:561

天气预报解说员所说的“百帕”如什么800百帕 700百帕 这个 百帕 是什么意思

帕是个物理上面关于压强的单位,我们常用的是千帕,比如说描述一种气体的时候说,标况下或者一个标准大气压下就指压强为101千帕时,百帕只是比千帕更小一级的单位,看看初中物理(九年级上册)书就可以知道了
2023-06-10 02:11:052

以下关于回归分析的说法中不正确的是( )A、越大,模型的拟合效果越好B...

对用来衡量模拟效果好坏的几个量,即相关指数,残差平方和,相关系数及残差图中带状区域的宽窄进行分析,残差平方和越小越好.回归方程得到的预报值是预报变量的可能取值的平均值;以及回归方程的局限性.判断即可.解:,相关指数可以刻画回归模型的拟合效果,越接近于,说明模型的拟合效果越好;故正确.,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越差,故正确;,回归方程一般都有时间性,例如不能用世纪年代的身高,体重数据所建立的回归方程,描述现在的身高和体重的关系.正确.,回归方程得到的预报值是预报变量的可能取值的平均值,不是精确值,不正确.故选:.本题考查回归分析,本题解题的关键是理解对于拟合效果好坏的几个量的大小反映的拟合效果的好坏,是对回归分析的思想,方法小结.要结合实例进行掌握.本题是一个基础题.
2023-06-10 02:11:221

hpa是什么意思

high-power amplifier 高功率放大器
2023-06-10 02:11:306

spss做相关分析和回归分析

1)准备分析数据在SPSS数据编辑窗口中,创建变量,并输入数据。再创建分级变量逗x1地、逗x2地、逗x3地、逗x4地和逗y地,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。2)启动线性回归过程单击SPSS主菜单的逗Analyze地下的逗Regression地中逗Linear地项,将打开线性回归过程窗口。3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的逗[y]地变量,然后点击逗Dependent地栏左边的向右拉按钮,该变量就移到逗Dependent地因变量显示栏里。设置自变量:将左边变量列表中的逗 [x1]地、逗 [x2]地、逗 [x3]地、逗[x4]地变量,选移到逗Independent(S)地自变量显示栏里。设置控制变量:不使用控制变量,可不选择任何变量。选择标签变量: 选择为标签变量。选择加权变量:没有加权变量,可不作任何设置。4)回归方式预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在逗Method地框中选中逗Enter地选项,建立全回归模型。5)设置输出统计量单击逗Statistics地按钮,将打开对话框。该对话框用于设置相关参数。其中各项的意义分别为:①逗Regression Coefficients地回归系数选项:逗Estimates地输出回归系数和相关统计量。逗Confidence interval地回归系数的95%置信区间。逗Covariance matrix地回归系数的方差-协方差矩阵。选择逗Estimates地输出回归系数和相关统计量。②逗Residuals地残差选项:逗Durbin-Watson地Durbin-Watson检验。逗Casewise diagnostic地输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:逗Outliers outside standard deviations地选择标准化残差的绝对值大于输入值的观测量;逗All cases地选择所有观测量。提交执行在主对话框里单击逗OK地,提交执行,结果将显示在输出窗口回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差。
2023-06-10 02:12:231

气象是如何预报的?

你好!气象是由气象站采集的数据进行预报。气象站主要由气象传感器、集热器和传输模块、太阳能供电系统、气象站支架等组成,为提高气象管理水平提供技术支撑。气象站是衡量某一地区气象变化的一个指标。 用于收集一些气象信息,包括风速、风向、温度、相对湿度、二氧化碳浓度、光照强度等气象信息。 气象站不能直接预测天气状况。 ,但依靠气象站采集的数据进行天气预报预警,气象站的使用为天气预报提供了参考。
2023-06-10 02:12:3212

什么是解释变量和预报变量

在回归分析中,自变量x称为解释变量,因变量y称为预报变量.
2023-06-10 02:13:091

预报变量和随机误差

回归模型中,预报变量与解释变量呈相关关系,故预报变量的值与解释变量有关. 而回归模型中,回归系数的求解,受到随机误差的总效应的影响, 故预报变量的值与随机误差也有关, 故预报变量y是由解释变量x和随机误差共同确定的, 故选:C.
2023-06-10 02:13:171

解释变量和预报变量是什么关系

回归模型中,预报变量与解释变量呈相关关系,故预报变量的值与解释变量有关,故B错误;而回归模型中,回归系数的求解,受到随机误差的总效应的影响,故预报变量的值与随机误差也有关
2023-06-10 02:13:241

在画两个变量的散点图时,下面哪个叙述是正确的( ) A.预报变量在x轴上,解释变量在y轴上 B.解释

∵通常把自变量称为解析变量,因变量称为预报变量,∴故解释变量为自变量,预报变量为因变量.故选b.
2023-06-10 02:13:312

在画两个变量的散点图时,下面哪个叙述是正确的( ) A.预报变量在x轴上,解释变量在y轴上 B.解释

B 试题分析:因为回归分析的目的是研究解释变量对预报变量影响的大小和关系的,故解释变量为自变量,预报变量为因变量. 解:∵通常把自变量称为解析变量,因变量称为预报变量,∴故解释变量为自变量,预报变量为因变量.故选B点评:本题主要考查散点图,考查回归分析的目的是研究解释变量对预报变量影响的大小和关系的.
2023-06-10 02:13:441

如果散点图中所有的样本点都在一条直线上,则解释变量和预报变量之间的相关系数是?

相关系数的绝对值越接近1,即1或-1,两个变量的线性相关关系越强,它们的散点图越接近一条直线
2023-06-10 02:13:541

如果散点图中所有的样本点都在一条直线上,则解释变量和预报变量之间的相关系数是?

相关系数的绝对值越接近1,即1或-1,两个变量的线性相关关系越强,它们的散点图越接近一条直线
2023-06-10 02:14:021

给出以下四个命题:①在回归直线方程y=0.2x+12中,当解释变量x每增加一个单位时,预报变量y平均减少0.2个

在回归直线方程y=0.2x+12中,当解释变量x每增加一个单位时,预报变量y平均增加0.2个单位,故①错误;根据残差的定义,在回归分析中,残差平方和越小,则相关关系越强,拟合效果越好,故②正确;在回归分析中,回归直线过样本点中心(.x,.y)点,故③正确;对分类变量X与Y,它们的随机变量K2(χ2)的观测值k来说,k越小,“X与Y有关系”的把握程度越小,k越大,“X与Y有关系”的把握程度越大.故④错误,故答案为:②③
2023-06-10 02:14:091

变量a对b的散点图哪个是横坐标

试题分析:因为回归分析的目的是研究解释变量对预报变量影响的大小和关系的,故解释变量为自变量,预报变量为因变量.解:∵通常把自变量称为解析变量,因变量称为预报变量,∴故解释变量为自变量,预报变量为因变量.故选B点评
2023-06-10 02:14:321

在画两个变量的散点图时,下面哪个叙述是正确的

答案B分析:因为回归分析的目的是研究解释变量对预报变量影响的大小和关系的,故解释变量为自变量,预报变量为因变量.解答:∵通常把自变量称为解析变量,因变量称为预报变量,∴故解释变量为自变量,预报变量为因变量.故选B.点评:本题主要考查散点图,考查回归分析的目的是研究解释变量对预报变量影响的大小和关系的.参考:http://www.zuoyebao.com/q/19000
2023-06-10 02:14:391

变量a对b的散点图哪个是横坐标

试题分析:因为回归分析的目的是研究解释变量对预报变量影响的大小和关系的,故解释变量为自变量,预报变量为因变量. 解:∵通常把自变量称为解析变量,因变量称为预报变量,∴故解释变量为自变量,预报变量为因变量.故选B点评
2023-06-10 02:15:061

给出以下四个命题:①在回归直线方程 =0.2 x +12中,当解释变量 x 每增加一个单位时,预报变量 平均

②③ ①错,应该是增加0.2个单位; ②正确;③正确;④错.应该是k越大,“ X 与 Y 有关系”的把握程度越大.
2023-06-10 02:15:131

回归分析中相关指数和相关系数有什么联系与区别?

在线性回归有,有上述关系.即:r^2=r^2在其实回归模型中不一定适用.r^2表达的是解释变量对总偏差平方和的贡献度,强调的是“几个模型”之间的拟合度的好与坏.r表示解释变量与预报变量之间线性相关性的强弱程度,用来判断是否具有线性相关性.
2023-06-10 02:15:232

回归分析中相关指数和相关系数有什么联系与区别?

在线性回归有,有上述关系.即:R^2=r^2在其实回归模型中不一定适用.R^2表达的是解释变量对总偏差平方和的贡献度,强调的是“几个模型”之间的拟合度的好与坏.r表示解释变量与预报变量之间线性相关性的强弱程度,用来判断是否具有线性相关性.
2023-06-10 02:15:332

如何使用spss录入二元回归分析的数据

1)准备分析数据在SPSS数据编辑窗口中,创建变量,并输入数据。再创建分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开线性回归过程窗口。3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的“[y]”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。设置自变量:将左边变量列表中的“ [x1]”、“ [x2]”、“ [x3]”、“[x4]”变量,选移到“Independent(S)”自变量显示栏里。设置控制变量:不使用控制变量,可不选择任何变量。选择标签变量: 选择为标签变量。选择加权变量:没有加权变量,可不作任何设置。4)回归方式预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在“Method”框中选中“Enter”选项,建立全回归模型。5)设置输出统计量单击“Statistics”按钮,将打开对话框。该对话框用于设置相关参数。其中各项的意义分别为:①“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量。“Confidence interval”回归系数的95%置信区间。“Covariance matrix”回归系数的方差-协方差矩阵。选择“Estimates”输出回归系数和相关统计量。②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验。“Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量。提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差。
2023-06-10 02:15:421

怎么根据天气资料制作一份天气预报

天气预报的一般过程是:气象资料的收集,对气象资料分析、计算,得到预报结论并对外发布三个步骤。 气象资料从何来 气象站观测的数据是天气预报的基础,气象站越多,预报越准确。为此,全世界建立了成千上万个气象站,配置了各种天气雷达,并在太空布设了多颗气象卫星,组成全球大气监测网。这个监测网每天在规定的时间里同时进行观测,从地面到高空,从陆地到海洋,全方位、多层次地观测大气变化,并将观测数据迅速汇集到各国国家气象中心,然后转发世界各地。气象台的计算机将收集到的数据进行处理和运算,得到天气图、数值预报图等,为预报员提供预报依据。 天气图:预报人员对当日各时次(一般地面图4次,高空图2次)天气图上的各种天气系统的高低空配置、发生发展和系统的移动方向、速度进行详细的分析,对未来本地将受哪个天气系统影响进行判断。 传真图:即中央气象台和国外有关气象台发布的数值预报图(一般每天2次),它描绘了北半球、亚欧和某些地区未来的高空、地面天气形势演变和降水、气温等气象要素的大致分布趋势,是各级气象台站制作本责任区天气预报的重要依据之一。 卫星云图:人造气象卫星在距地球几百到3万多公里的高空拍摄地球大气中的风云片,通过无线电波传送到地面,气象科技人员从卫星云图接收机的云图图像上,可分析出天气的各种变化情况。 雷达回波图:一般天气雷达可探测50-500公里半径范围内的降水、台风等天气回波的强度、范围、移向、移速等演变情况。 气象资料分析和计算 天气预报的方法有很多,最常用的有两种。一种是传统的天气学方法,就是将同一时刻同一层次的气象数据填绘在一张特制的图上,这张图称为天气图。经过对天气图上的各种气象要素进行分析,预报员就可以了解当前天气系统(台风、锋等)的分布和结构,判断天气系统与具体天气(雨、风、雾等)的联系及其未来演变情况,从而做出各地的天气预报。现在天气图的绘制和分析都由计算机来完成。 另一种是数值预报方法,它是随着计算机技术的进步而逐步发展起来的,它做出的天气预报是靠计算机“算出来”的。由于大气的运动遵循一些已知的物理定律,根据这些定律,可以将大气运动状态写成一组偏微分方程,只要给出初值(大气的当前状况),就可以求解出方程组随时间变化的变量值,据此得到大气的未来状况。求解方程的过程极其复杂,要求在规定的时间里处理大量的气象数据,即使最简化的大气方程也必须在高速计算机上进行运算。 天气预报需会商 无论是天气学方法,还是数值预报方法,或者是其他预报方法,都存在一定的局限性,这就需要预报员对各种预报结果进行综合分析判断。当天气情况比较复杂,或者灾害性天气来临前,预报专家们就要进行天气会商,甚至还与外地、外国的专家交换意见,在充分讨论的基础上,得出比较可靠的预报意见。预报员做出预报后,及时发布,这时,市民们看到、听到的就是最具权威的天气预报了。 预报也有不准时 经过如此繁杂的工程后得到的天气预报为何也偶尔不太准呢?气象专家称,不准确的预报不可避免。气象科学目前仍处于年轻、发展阶段,天气变化的客观规律还没有全部被认识。而大气运动的本身又是十分错综复杂,这是天气预报有时不准确的根本原因所在。
2023-06-10 02:15:511