- LuckySXyd
-
函数在x=1连续,
所以极限等于
1^2·cos(1/1)=cos1
- Jm-R
极限的几种求法
A、1^∞型极限,就是(1+1/x)^x,x→∞的极限【解答方法是运用特殊极限】 B、0/0型极限,就是无穷小/无穷小的极限【解答方法是罗必达方法,或放大、缩小法】 C、∞/∞型极限,就是∞/∞的极限【解答方法是罗必达方法,或化无穷大为无穷小法】 D、∞-∞型极限,就是∞ - ∞的极限【解答方法是分子有理化】 E、0°型极限,就是无穷小的无穷小次幂,【解答方法:利用指数、对数,化成B型或C型】 F、∞^0型极限,就是无穷大的无穷小次幂,【解答方法同上】 G、0×∞型极限,就是无穷小乘以无穷大,【解答方法同上】 不定式有上面七种,后面的方法是一般的方法,具体的还有其他方法,如【积分法】等等. 【如果不是不定式,就直接代入计算】2023-05-25 12:37:131
极限值怎么求
在数学中,极限值指的是函数在某一点周围的最大值或最小值。求极限值的方法有很多种,其中比较常用的是导数法和微积分法。具体步骤如下:导数法:求出函数的导数,然后将导数等于0的点代入原函数中求出函数值,即可得到极值点。需要注意的是,还需要判断极值点的类型,是极大值还是极小值。微积分法:将函数的一阶导数和二阶导数分别求出来,然后判断函数在导数等于0的点的左右两侧的二阶导数的符号,来确定该点的类型。如果二阶导数大于0,则为极小值点;如果二阶导数小于0,则为极大值点。除了导数法和微积分法之外,还有其他方法可以求解极限值,比如拉格朗日乘数法、拉普拉斯变换法等等。这些方法适用于不同的函数和问题,需要根据具体情况选择合适的方法。拓展内容:极限值在数学中具有广泛的应用,特别是在微积分、优化理论、概率论等领域中有着重要的作用。掌握求解极限值的方法不仅有助于理解数学概念和原理,也有助于解决实际问题,比如优化生产过程、提高效率、降低成本等等。因此,在数学学习中,求解极限值是一个非常重要的环节,需要认真学习和掌握。2023-05-25 12:37:201
极限如何求
一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。2023-05-25 12:37:381
四种求极限的常用方法
求极限的常用方法如下:1、利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2、利用有理化分子或分母求函数的极限a.若含有,一般利用去根号b.若含有,一般利用,去根号3、利用两个重要极限求函数的极限4、利用无穷小的性质求函数的极限性质1:有界函数与无穷小的乘积是无穷小性质2:常数与无穷小的乘积是无穷小性质3:有限个无穷小相加、相减及相乘仍旧无穷小“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。2023-05-25 12:37:451
极限的求法
求极限的方法总结如下:1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。由定义求极限极限的本质――既是无限的过程,又有确定的结果。一方面可从函数的变化过程的趋势抽象得出结论,另一方面又可从数学本身的逻辑体系下验证其结果。不是每一道求极限的题我们都能通过直观观察总结出极限值,因此由定义法求极限就有一定的局限性,不适合比较复杂的题。利用函数的连续性求极限此方法简单易行但不适合于f(x)在其定义区间内是不连续的函数,及f(x)在x0处无定义的情况。2023-05-25 12:38:091
求极限的方法有哪些?
定义法,夹逼准则,洛必达,等阶无穷小替换,加减一个无穷小量来试一试,还有换元法。2023-05-25 12:38:244
四种求极限的方法
在极限都存在的情况下,和差积商的极限,等于极限的和差积商。用数学的话表达就是:lim(A+B)limA+limBlim(A-B)=limA-limBlimAB=limA×limBlim(A/B)limA/limB前提是以上各个极限都存在。求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;3、运用两个特别极限;4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。8、特殊情况下,化为积分计算。9、其他极为特殊而不能普遍使用的方法。拓展资料极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。2023-05-25 12:38:511
求极限的方法有哪些
求极限的方法有以下几种:1、代入法:将变量代入函数中,得到一个数值,即为该点的函数值。2、夹逼定理:通过夹逼定理找到一个上下界,并让上下界无限逼近目标点,从而得到极限值。3、极限的四则运算法则:利用函数极限的四则运算法则求出极限值。4、洛必达法则:将极限转化成两个函数的导数的极限,再进行计算。5、泰勒公式:利用泰勒公式展开函数,近似表示为一个多项式,从而求得其极限。6、牛顿-莱布尼茨公式:利用牛顿-莱布尼茨公式计算函数在某一点的极限值。7、奇偶性、周期性分析法:通过奇偶性、周期性等特征,判断函数在某一点是否存在极限。函数极限存在的条件函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。函数极限存在的条件有以下两个:1、函数趋于目标值:即当自变量趋于某一数值时,函数的取值趋近于某一固定的数值。2、趋近方式唯一性:即函数在自变量趋近目标值的过程中,无论从哪个方向靠近,最终都将收敛到同一个值,否则该函数极限不存在。2023-05-25 12:39:091
求极限的公式有哪些?
1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。其他公式:1、椭圆周长(L)的精确计算要用到积分或无穷级数的求和,最早由伯努利提出,欧拉发展,对这类问题的讨论引出一门数学分支椭圆积分L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)积分,其中a为椭圆长轴,e为离心率。2、定积分的近似计算,定积分应用相关公式,空间解析几何和向量代数,多元函数微分法及应用,微分法在几何上的应用,方向导数与梯度,多元函数的极值及其求法,重积分及其应用,柱面坐标和球面坐标,曲线积分,曲面积分,高斯公式,斯托克斯公式是曲线积分与曲面积分的关系。3、设{xn}为一源个无穷实数数列2113的集合。如果存在5261实数a,对于任意正4102数ε,都N>0,唯一性若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。有界性:如果一个数列收敛有极限),那么这个数列一定有界。2023-05-25 12:39:441
极限如何求解?
方法一:都是幂指数的形式,可以提出最高次项,极限值就是最高次项的系数之比,如下图所示。方法二:可以用洛必达法则求极限。具体做法是同时对分子分母求导,然后借助方法一或者直接代入,可以得到答案。扩展资料必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法 。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。参考资料:百度百科洛必达法则2023-05-25 12:39:561
函数极限的求法
①利用函数连续性:limf(x)=f(a)x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)②恒等变形因式分解等③通过已知极限特别是两个重要极限需要牢记。2023-05-25 12:40:291
函数极限的求法
①利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)②恒等变形 因式分解等③通过已知极限特别是两个重要极限需要牢记。2023-05-25 12:40:451
求函数极限有什么方法
1、利用定义求极限。 2、利用柯西准则来求。 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm|<ε. 3、利用极限的运算性质及已知的极限来求。 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1. 4、利用不等式即:夹挤定理。 5、利用变量替换求极限。 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m. 6、利用两个重要极限来求极限。 (1)lim sinx/x=1 x->0 (2)lim (1+1/n)^n=e n->∞ 7、利用单调有界必有极限来求。 8、利用函数连续得性质求极限。 9、用洛必达法则求,这是用得最多的。 10、用泰勒公式来求,这用得也很经常。2023-05-25 12:40:521
怎样求极限
很简单 做运动 做到你不能做为止 然后再坚持30分钟就可以了2023-05-25 12:40:592
求极限方法及相关的公式
1.利用极限的四则运算及复合运算法则2.利用无穷小的运算法则3.利用无穷小与无穷大的关系4.利用limf(x)=A<=>f(x)=A+无穷小5.利用两个重要极限6.利用夹逼定理7.利用单调有界准则及解方程8.利用等价无穷小代替9.利用函数的连续性10.利用递推公式11.利用合并或分项,因式分解,约分,变量代换,取对数等技巧12.利用函数极限与数列极限的关系13.利用洛必达法则14.利用导数定义15.利用微分中值定理与泰勒公式15.利用定积分定义、定积分性质16.利用收敛级数的性质2023-05-25 12:41:081
求极限,麻烦把过程写下来。
算出来等于4 ,你令2x+1=t(t—>无穷)看起来更直观,然后上下约分,一目了然。2023-05-25 12:41:153
极限的求法
二元函数求极限是高数中的难点,现归纳了6种求二元函数极限的方法,分别为:直接证明、先估值后证明、利用二元函数的连续性、用无穷小量与有界变量的乘积仍为无穷小量的结论、用重要极限limx>0sinx/x=12023-05-25 12:41:292
极限怎么求
用洛必达法则2023-05-25 12:41:393
极限怎么求
1、利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2、利用有理化分子或分母求函数的极限a.若含有,一般利用去根号b.若含有,一般利用,去根号3、利用两个重要极限求函数的极限4、利用无穷小的性质求函数的极限性质1:有界函数与无穷小的乘积是无穷小性质2:常数与无穷小的乘积是无穷小性质3:有限个无穷小相加、相减及相乘仍旧无穷小5、分段函数的极限6、利用抓大头准则求函数的极限2023-05-25 12:42:051
如何求极限啊
一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。2023-05-25 12:42:261
怎么求极限要过程
希望你懂2023-05-25 12:42:332
x趋向于无穷时 求极限
图呢?逗我?2023-05-25 12:42:472
极限怎么求?
先转化为n的函数就可以,然后在判断n的最大和最小2023-05-25 12:42:592
求函数极限的方法总结
1、利用定义求极限。 2、利用柯西准则来求。 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于 任意的自然数m有|xn-xm|<ε. 3、利用极限的运算性质及已知的极限来求。 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1. 4、利用不等式即:夹挤定理。 5、利用变量替换求极限。 例如lim(x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m. 6、利用两个重要极限来求极限。 (1)limsinx/x=1 x->0 (2)lim(1+1/n)^n=e n->∞ 7、利用单调有界必有极限来求。 8、利用函数连续得性质求极限。 9、用洛必达法则求,这是用得最多的。 10、用泰勒公式来求,这用得也很经常。2023-05-25 12:43:141
求极限方法
求极限方法如下:极限的类型一共有五种,分别是零比零型,无穷大比无穷大型,零乘无穷大型,一的无穷大次方型,还有定积分类型。具体的求解方法如下:1、零比零型,可用洛必达求解。2、无穷大比无穷大型,可用洛必达。3、零乘无穷大型,把无穷或零放到分母上,化为零比零型或无穷大比无穷大型。4、一的无穷大次方型,利用指数转换来求解。5、定积分类型,可用洛必达求解。首先他的使用有严格的使用前提!必须是 X 趋近而不是N 趋近!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然 n 趋近是 x 趋近的一种情况而已,是必要条件(还有一点数列极限的 n 当然是趋近于正无穷的, 不可能是负无穷 !第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。2023-05-25 12:43:341
极限如何求?
极限的求法如下:当a趋于无穷小的时候,有一个公式(sin a)/a=1。你的题目中xsin1/x可以拆解成 x乘以sin1/x的形式,由题意可知x是无穷小,而sin1/x是一个有界函数,因为无穷小乘以有界函数任然是无穷小。所以 xsin1/x 为无穷小。sin(xsin1/x)比上xsin1/x 可以用公式(当a趋于无穷小的时候,有一个公式(sin a)/a=1)。答案等于1。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)。3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-25 12:44:141
极限的求法?
极限的求法如下:当a趋于无穷小的时候,有一个公式(sin a)/a=1。你的题目中xsin1/x可以拆解成 x乘以sin1/x的形式,由题意可知x是无穷小,而sin1/x是一个有界函数,因为无穷小乘以有界函数任然是无穷小。所以 xsin1/x 为无穷小。sin(xsin1/x)比上xsin1/x 可以用公式(当a趋于无穷小的时候,有一个公式(sin a)/a=1)。答案等于1。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)。3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-25 12:44:261
极限怎么求
极限的求法如下:1、利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2、利用有理化分子或分母求函数的极限a.若含有,一般利用去根号b.若含有,一般利用,去根号3、利用两个重要极限求函数的极限()4、利用无穷小的性质求函数的极限性质1:有界函数与无穷小的乘积是无穷小性质2:常数与无穷小的乘积是无穷小性质3:有限个无穷小相加、相减及相乘仍旧无穷小5、分段函数的极限求分段函数的极限的充要条件是:2023-05-25 12:44:411
求极限的方法大全
信都2023-05-25 12:45:295
极限的求法
求极限的方法总结如下:1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。2023-05-25 12:47:251
极限到底怎么计算的啊?
1、第一个重要极限的公式:lim sinx / x = 1 (x->0) 当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞) 当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-25 12:47:381
极限的几种求法
A、1^∞型极限,就是(1+1/x)^x,x→∞的极限【解答方法是运用特殊极限】 B、0/0型极限,就是无穷小/无穷小的极限【解答方法是罗必达方法,或放大、缩小法】 C、∞/∞型极限,就是∞/∞的极限【解答方法是罗必达方法,或化无穷大为无穷小法】 D、∞-∞型极限,就是∞ - ∞的极限【解答方法是分子有理化】 E、0°型极限,就是无穷小的无穷小次幂,【解答方法:利用指数、对数,化成B型或C型】 F、∞^0型极限,就是无穷大的无穷小次幂,【解答方法同上】 G、0×∞型极限,就是无穷小乘以无穷大,【解答方法同上】 不定式有上面七种,后面的方法是一般的方法,具体的还有其他方法,如【积分法】等等. 【如果不是不定式,就直接代入计算】2023-05-25 12:47:471
求极限的所有方法,要求详细点
极限的求法有很多,但细节忘了,一会我给你做一下2023-05-25 12:47:577
求极限的方法?
1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。2023-05-25 12:48:371
求函数极限的正确步骤
一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当xa(或x∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。2023-05-25 12:49:041
数学上怎么求无穷比无穷型的极限
洛必达"2023-05-25 12:49:149
如何求极限?
一、利用极限四则运算法则求极限。函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=a,limg(x)=b,则。lim[f(x)±g(x)]=limf(x)±limg(x)=a±b。lim[f(x)・g(x)]=limf(x)・limg(x)=a・b。lim==(b≠0)。(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:1.直接代入法。对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。2.无穷大与无穷小的转换法。在相同的变化过程中,若变量不取零值,则变量为无穷大量。圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。3.除以适当无穷大法。对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。4.有理化法。适用于带根式的极限。二、利用夹逼准则求极限。函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>n)有定义,若①f(x)≤g(x)≤h(x)。②f(x)=h(x)=a(或f(x)=h(x)=a),则g(x)(或g(x))存在,且g(x)=a(或g(x)=a)。(类似的可以得数列极限的夹逼定理)。利用夹逼准则关键在于选用合适的不等式。三、利用单调有界准则求极限。单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限。常见等价无穷小量的例子有:当x→0时,sinx~x。tanx~x。1-cosx~x。e-1~x。ln(1+x)~x。arcsinx~x。arctanx~x。(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限。在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限。使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限。如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。2023-05-25 12:51:441
极限怎么求
求极限的方法总结如下:1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。2023-05-25 12:51:531
极限的几种求法
A、1^∞型极限,就是(1+1/x)^x,x→∞的极限【解答方法是运用特殊极限】B、0/0型极限,就是无穷小/无穷小的极限【解答方法是罗必达方法,或放大、缩小法】C、∞/∞型极限,就是∞/∞的极限【解答方法是罗必达方法,或化无穷大为无穷小法】D、∞-∞型极限,就是∞-∞的极限【解答方法是分子有理化】E、0°型极限,就是无穷小的无穷小次幂,【解答方法:利用指数、对数,化成B型或C型】F、∞^0型极限,就是无穷大的无穷小次幂,【解答方法同上】G、0×∞型极限,就是无穷小乘以无穷大,【解答方法同上】不定式有上面七种,后面的方法是一般的方法,具体的还有其他方法,如【积分法】等等。【如果不是不定式,就直接代入计算】2023-05-25 12:52:151
极限怎么求的过程
通常是乘除关系才可以用,加减关系的话看情况。lim(x→0)ln(1+x)/tanx=lim(x→0)ln(1+x)/(sinx/cosx)=lim(x→0)ln(1+x)/sinx*cosx=lim(x→0)ln(1+x)/sinx*1。“极限”是数学中的分支,微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(永远不能够等于A,但是取等于A已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。2023-05-25 12:52:211
函数极限的求法
可以利用单调有界必有极限来求;利用函数连续的性质求极限;也可以通过已知极限来求,特别是两个重要极限需要牢记。 第一种:利用函数连续性:limf(x)=f(a)x->a (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0) 第二种:恒等变形 当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决: 第一:因式分解,通过约分使分母不会为零。 第二:若分母出现根号,可以配一个因子使根号去除。 第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)2023-05-25 12:52:291
如何求函数的极限?
式子的乘除因子可以用等价无穷小代换,加减不行。除非能保证两部分极限都存在时将极限拆成两个极限的和。高等数学极限求法:1,定义法。此法一般用于极限的证明题,计算题很少用到,但仍应熟练掌握,不重视基础知识、基本概念的掌握对整个复习过程都是不利的。2,洛必达法则。此法适用于解"0/0” 型和"8/8” 型等不定式极限,但要注意适用条件(不只是使用洛必达法则要注意这点,数学本身是逻辑性非常强的学科,任何一个公式、任何一条定理的成立都是有使其成立的前提条件的,不能想当然的随便乱用。3,对数法。此法适用于指数函数的极限形式,指数越是复杂的函数,越能体现对数法在求极限中的简便性,计算到最后要注意代回以e为底,不能功亏一篑。2023-05-25 12:52:411
极限的求法?
极限的求法如下:当a趋于无穷小的时候,有一个公式(sin a)/a=1。你的题目中xsin1/x可以拆解成 x乘以sin1/x的形式,由题意可知x是无穷小,而sin1/x是一个有界函数,因为无穷小乘以有界函数任然是无穷小。所以 xsin1/x 为无穷小。sin(xsin1/x)比上xsin1/x 可以用公式(当a趋于无穷小的时候,有一个公式(sin a)/a=1)。答案等于1。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)。3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-25 12:53:081
如何求高数的极限?
极限公式:1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。2023-05-25 12:53:201
高数各种求极限方法
1、利用定义求极限。2、利用柯西准则来求。3、利用极限的运算性质及已知的极限来求。4、利用不等式即:夹逼原则。5、利用变量替换求极限。6、利用两个重要极限来求极限。7、利用单调有界必有极限来求。8、利用函数连续得性质求极限。9、用洛必达法则求,这是用得最多的。10、用泰勒公式来求,这用得也很经常。18种未免也太多了,很多都差不多吧。我也不怎么记得了。你老师没教你吗?2023-05-25 12:53:351
高等数学极限求法
重要极限:(1+x)^(1/x) -> e (x->0)顺便指出,这种求极限的方法叫“局部取极限,其余先不动”,是错误的。按这种做法,任何极限都可以是 0 ,如x->0 时,f(x)=x * [f(x)/x] = 0 * [f(x)/x] = 0 。2023-05-25 12:53:411
极限的几种求法
A、1^∞型极限,就是(1+1/x)^x,x→∞的极限【解答方法是运用特殊极限】B、0/0型极限,就是无穷小/无穷小的极限【解答方法是罗必达方法,或放大、缩小法】C、∞/∞型极限,就是∞/∞的极限【解答方法是罗必达方法,或化无穷大为无穷小法】D、∞-∞型极限,就是∞-∞的极限【解答方法是分子有理化】E、0°型极限,就是无穷小的无穷小次幂,【解答方法:利用指数、对数,化成B型或C型】F、∞^0型极限,就是无穷大的无穷小次幂,【解答方法同上】G、0×∞型极限,就是无穷小乘以无穷大,【解答方法同上】不定式有上面七种,后面的方法是一般的方法,具体的还有其他方法,如【积分法】等等。【如果不是不定式,就直接代入计算】2023-05-25 12:53:501
求极限的方法总结 求极限的方法有哪些
1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。 2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。 3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。 4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。 5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。 6、若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。 7、求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。2023-05-25 12:53:561
求极限的步骤
通常是乘除关系才可以用,加减关系的话看情况。lim(x→0)ln(1+x)/tanx=lim(x→0)ln(1+x)/(sinx/cosx)=lim(x→0)ln(1+x)/sinx*cosx=lim(x→0)ln(1+x)/sinx*1。“极限”是数学中的分支,微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(永远不能够等于A,但是取等于A已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。2023-05-25 12:54:211
极限怎么求出,求过程
2023-05-25 12:54:404