汉邦问答 / 问答 / 问答详情

集合公式是什么呢?

2023-05-24 12:08:52
TAG: 公式
ardim

集合公式是A∩B={x:R(x)}={x:P(x)andQ(x)}={x:x∈Aandx∈B}。当A={x:P(x)}和B={y:Q(y)}为集合的时候,集合A和B的交或交集,写作C=A∩B。因为性质P(x)和x∈A,Q(x)和x∈B等价,所以A∩B={x:R(x)}={x:P(x)andQ(x)}={x:x∈Aandx∈B}成立,也就是说A和B的交集就是,A和B共有元素的集合。

集合论

集合的特性

确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。

互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。

无序性:{a,b,c}{c,b,a}是同一个集合。集合有以下性质:若A包含于B,则A∩B=A,A∪B=B集合的表示方法:常用的有列举法和描述法。1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}。

集合的概念是什么?

集合的概念是:集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。集合的特性:确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
2023-05-24 10:29:001

什么是集合,集合的概念

集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.
2023-05-24 10:29:153

数学中集合的意思是什么通俗些谢谢百分百好评!

就是一堆东西装在一起,一般这一堆东西要长得差不多,比如一群人,一些数.然后要满足这一堆东西不能有两个一模一样的--互异性,然后东西的顺序没有影响,因为我们只关心有哪些东西--无序性,最后每一个东西要确定,比如说你不能向集合里面丢一个东西叫做长得高的人,因为多高算长得高我们不知道,可以往里面丢1米8的人这就是确定的
2023-05-24 10:29:243

集合是什么?

LS的已经回答得很详细了,我只举个很简单的例子, 123456 这是很简单的6个数字,这可以看做一个集合,这个集合中包含了数字特性。百度知道 这也是一个集合,包含了字符的特性。只要掌握一种规律,那就是有相同类似特性的都可以组合成集合。用术语就是 一个大的数据类型可以包含多个小的数据类型比如字符串类型包含了多个字符类型object类型包含了所有类型自己好好想想吧。
2023-05-24 10:29:313

集合是什么意思?

由一个或多个确定的元素所构成的整体
2023-05-24 10:29:382

什么是集合?

集合,元素。是数学中唯一的两个不能用其他数学概念定义的数学概念,是其他一切概念的出发点。所以它们只能说明,不能定义。至于说明,一楼讲了许多,我就不再重复了。
2023-05-24 10:29:542

集合的概念

被3除余2的自然数的全体构成的集合的答案是{x l x=3k+2 k∈N}
2023-05-24 10:30:014

集合是什么意思

1 分散的人或事物聚集在一起;使聚集。《汉书·匈奴传下》:“发三十万众,具三百日粮……计其道里,一年尚未集合,兵先至者聚居暴露。” 章炳麟 《文学说例》:“若《释诂》所陈……诚以八代殊名,方国异语,靡不集合焉尔。” 魏巍 《东方》第四部第十八章:“ 毛主席 上 井冈山 ,开头人很少,吹一声哨子就集合起来了。”如:集合队伍。2 集体,团体。鲁迅 《书信集·致许寿裳》:“惟近来出杂志一种曰《新潮》,颇强人意,只是二十人左右之小集合所作,间亦杂教员著作。”3 数学名词。指若干具有共同属性的事物的总体。如全部自然数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。简称“集”。
2023-05-24 10:30:284

什么是集合?

N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。集合及运算的概念:集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。空集:不含任何元素的集合叫做空集。记为Φ。集合的三要素:确定性、互异性、无序性。集合的表示方法:列举法、描述法、视图法、区间法。集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集。一、集合的运算:1、集合交换律:A∩B=B∩AA∪B=B∪A2、集合结合律:(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)3、集合分配律:A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)
2023-05-24 10:30:461

集合的意思解释 集合造句 近义词反义词

集合的意思: [jíhé] 1.许多分散的人或物聚在一起:全校同学已经在操场~了。 2.使集合;汇集:~各种材料,加以分析。 3.数学上指若干具有共同属性的事物的总体。如全部整数就成一个整数的集合,一个工厂的全体工人就成一个该工厂全体工人的集合。简称集。 集合百科解释: 集合,分散的人或事物聚集到一起,使聚集,紧急集合。 集合的详细解释: 集合 [jí hé] 分散的人或事物聚集在一起;使聚集。 《汉书·匈奴传下》:“发三十万众,具三百日粮……计其道里,一年尚未集合,兵先至者聚居暴露。” 章炳麟 《文学说例》:“若《释诂》所陈……诚以八代殊名,方国异语,靡不集合焉尔。” 魏巍 《东方》第四部第十八章:“ 毛主席 上 井冈山 ,开头人很少,吹一声哨子就集合起来了。”如:集合队伍。 集体,团体。 鲁迅 《书信集·致许寿裳》:“惟近来出杂志一种曰《新潮》,颇强人意,只是二十人左右之小集合所作,间亦杂教员著作。” 数学名词。指若干具有共同属性的事物的总体。如全部自然数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。简称“集”。 集合的近义词: 齐集,凑集,鸠合,聚积,聚会,聚拢,调集,聚集,鸠集,召集,汇合,荟萃,集中,纠合,会合,纠集,聚合,集结,会集,结合,蚁合,群集 集合的反义词: 拼凑,分散,解散,遣散 集合造句: 1、周一下午,全校同学集合在操场上参加集体舞大赛。 2、我们约定十分钟之后在那个十字路口集合。 3、广播中要求大家立刻到操场集合! 4、全校集合,请各班查点一下人数。 5、老师在操场上呼唤同学们集合。 6、除非有特殊情况,否则后天八点后必须准时到校集合。 7、同学们约定星期天上午十点钟在少年宫门前集合。 8、我们按照学校的规定准时到达了集合地点。 9、明天你准时到码头集合,一言为定,不可失约! 10、不在我这边的,就是反对我的;不跟我集合的,就是分散的。 11、多决策的时候,需要我们群策群力,这样才能全面集合大家的思想,更准确地做出决策。 12、一听到集合这两个字,我们立马跑到操场上。 13、自从教练宣布迟到要处罚以后,效果随即立竿见影,每次训练大家都准时集合。 14、听到命令,他们很快地集合起来,不到一分钟就把队排好。 15、集合起奔向太阳的队伍。 16、文化本来是一个地区的软件的综合,但是,当人们认可这样一个观念集合时候,人们便不会有排斥感,更利于和谐相处,共同交流。
2023-05-24 10:30:581

什么叫集合?

集合的概念  某些指定的对象集在一起就是集合。  一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员)。  元素与集合的关系:  元素与集合的关系有“属于”与“不属于”两种。  集合与集合之间的关系:  某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。  『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A �6�7 B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A �6�3 B。 中学教材课本里将 �6�3 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。    真子集所有男人的集合是所有人的集合的真子集。』  集合的三种运算法则:  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}   交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}  例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。  有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减1再相乘。48个。  无限集: 定义:集合里含有无限个元素的集合叫做无限集  有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。  差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。  注:空集包含于任何集合,但不能说“空集属于任何集合”.  补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}  空集也被认为是有限集合。  例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。  在信息技术当中,常常把CuA写成~A。  集合元素的性质:  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。  2.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。  3.无序性:{a,b,c}{c,b,a}是同一个集合。  4.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。  5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。  集合有以下性质:若A包含于B,则A∩B=A,A∪B=B  集合的表示方法:  集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。 将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。  常用的有列举法和描述法。  1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}  2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}  3.图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。  4.自然语言  常用数集的符号:  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N  (2)非负整数集内排除0的集,也称正整数集,记作N或N*  (3)全体整数的集合通常称作整数集,记作Z  (4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}  (5)全体实数的集合通常简称实数集,记作R  (6)复数集合计作C  集合的运算:  集合交换律  A∩B=B∩A  A∪B=B∪A  集合结合律  (A∩B)∩C=A∩(B∩C)  (A∪B)∪C=A∪(B∪C)  集合分配律  A∩(B∪C)=(A∩B)∪(A∩C)  A∪(B∩C)=(A∪B)∩(A∪C)  集合德.摩根律  Cu(A∩B)=CuA∪CuB  Cu(A∪B)=CuA∩CuB  集合“容斥原理”  在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3  card(A∪B)=card(A)+card(B)-card(A∩B)  card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)  1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。  集合吸收律  A∪(A∩B)=A   A∩(A∪B)=A  集合求补律  A∪CuA=U  A∩CuA=Φ  设A为集合,把A的全部子集构成的集合叫做A的幂集  德摩根律 A-(BUC)=(A-B)∩(A-C)  A-(B∩C)=(A-B)U(A-C)  ~(BUC)=~B∩~C   ~(B∩C)=~BU~C  ~Φ=E ~E=Φ  特殊集合的表示  复数集 C  实数集 R  整数集 Z  有理数集 Q  自然数集 N
2023-05-24 10:31:191

集合的意思

集合是:具有相同属性的事物的全体。数学中,把具有相同属性的事物的全体称为集合。集合概念用来指称集合体,是由许多对象有机聚合构成的集合体,集合体与其构成部分之间是整体与部分的关系。数学中,把具有相同属性的事物的全体称为集合,在某一思维对象领域,思维对象可以有两种不同的存在方式。一种是同类分子有机结合构成的集合体,另一种是具有相同属性对象组成的类。集合是现代数学中一个重要的基本概念。集合论的基本理论直到十九世纪末才被创立,现在已经是数学教育中一个普遍存在的部分,在小学时就开始学习了。其他含义集合是具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:分散的人或事物聚集到一起;使聚集:紧急集合、数学名词。一组具有某种共同性质的数学元素:有理数的集合、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。它有几个性质,像确定性、互异性、无序性这都是集合的基本性质。
2023-05-24 10:31:351

数学中的集合是什么意思?

对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b。由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}。由于a,b是任意两个对象,它们可以相等,也可以不相等。当a=b时,{a,b},可以记做{a}或{b},并且称之为单元集合。参考http://baike.baidu.com/view/15216.htm#2
2023-05-24 10:31:503

集合的概念集合的定义是什么

  集合论的基础是由德国数学家 康托尔在19世纪70年代奠定的,经过一大批卓越的科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。集合的定义是什么?以下是我为大家整理的关于集合的定义,欢迎大家前来阅读!  集合的定义   集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。由一个或多个元素所构成的叫做集合。若x是集合A的元素,则记作x∈A。集合中的元素有三个特征:1.确定性(集合中的元素必须是确定的)2.互异性(集合中的元素互不相同。例如:集合A={1,a},则a不能等于1)3.无序性(集合中的元素没有先后之分。)   集合的概念   集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的 元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。 若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。一般的我们把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。   集合 中不同元素的数目称为集合 的 基数,记作card( )。当其为有限大时,集合 称为 有限集,反之则为无限集。   有一类特殊的集合,它不包含任何元素,如 ,我们称之为 空集,记为 ∅。   设S,T是两个集合,如果S的所有 元素都属于T ,即 , 其中符号 称为包含,即表示由左边的 命题可以推出右边的 命题,则称S是T的 子集,记为 。显然,对任何集合S ,都有 。   如果S是T的一个子集,即 ,但在T中存在一个 元素 x不属于S ,即 ,则称S是T的一个 真子集。   如果两个集合S和T的元素完全相同,则称S与T两个集合 相等,记为S=T 。显然我们有 其中符号 称为 当且仅当,表示左边的 命题与右边的 命题相互 蕴含,即两个命题 等价。   并集定义:由所有属于集合 或属于集合 的元素所组成的集合,记作 ∪ (或 ∪ ),读作“ 并 ”(或“ 并 ”),即 ∪ ={ | ∈ ,或 ∈ }。并集越并越多。   交集定义:由属于 且属于 的相同元素组成的集合,记作A∩B(或 ∩ ),读作“ 交 ”(或“ 交 ”),即 ∩ ={ | ∈ ,且 ∈ }。交集越交越少。   若 包含 ,则 ∩ = , ∪ =   相对补集定义:由属于 而不属于 的元素组成的集合,称为 关于 的相对补集,记作 - 或 ,即 - ={ | ∈ ,且 ∉ "}   绝对补集定义: 关于全集合 的相对补集称作 的绝对补集,记作 "或∁u( )或~ 。· "= ; ‘=   定义:设有集合 ,由集合 所有子集组成的 集合,称为集合 的幂集。   定理:有限集 的 幂集的 基数等于2的 有限集 的 基数 次 幂。   数学分析中,最常遇到的实数集的子集是 区间。   设a,b(a   集合表示法   表示集合的 方法 通常有三种。   列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。   列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。如正整数集 和整数集 可以分别表示为 和 。   {代表元素|满足的性质}   设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}   例如,由2的平方根组成的集合B可表示为B={x|x =2}。   而有理数集 和正实数集 则可以分别表示为 和 。   N:非负整数集合或 自然数集合{0,1,2,3,…}   N*或 N+:正整数集合{1,2,3,…}   Z: 整数集合{…,-1,0,1,…}   Q: 有理数集合   Q+:正有理数集合   Q-:负有理数集合   R: 实数集合(包括有理数和无理数)   R+:正实数集合   R-:负实数集合   C: 复数集合   ∅:空集合(不含有任何元素的集合称为空集合,又叫空集)   集合特性   给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。   一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用 多重集,其中的元素允许出现多次。   一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。(参见 序理论)   交换律: ∩ = ∩ ∪ = ∪   结合律: ∪( ∪ )=(A∪ )∪ ∩( ∩ =( ∩ ∩   分 配对 偶律: ∩( ∪ )=( ∩ )∪( ∩ ) ∪( ∩ )=( ∪ )∩( ∪ )   对偶律:( ∪ )^ = ^ ∩ ^ ( ∩ )^ = ^ ∪ ^   同一律: ∪∅= ∩ =   求补律: ∪ "= ∩ "=∅   对合律: ""=   等 幂律: ∪ = ∩ =   零一律: ∪ = ∩ =   吸收律: ∪( ∩ )= ∩( ∪ )=   德·摩根律(反演律):( ∪ )"= "∩ " ( ∩ )"= "∪ "   德·摩根律:1.集合 与集合 的交集的 补集等于集合 的补集与集合 的补集的 并集; 2.集合 与集合 的并集的 补集等于集合 的补集与集合 的补集的交集。   容斥原理(特殊情况):   card( ∪ )=card( )+card( )-card( ∩ )
2023-05-24 10:31:571

什么是集合

http://v.ku6.com/show/tzG_NVl8iPeFzMVz.html集合的基础知识
2023-05-24 10:32:068

什么叫集合

集合的概念 某些指定的对象集在一起就是集合。 一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员)。 元素与集合的关系: 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系: 某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。 『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ⊆ B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A ⊂ B。 中学教材课本里将 ⊂ 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。 真子集所有男人的集合是所有人的集合的真子集。』
2023-05-24 10:32:323

什么是集合?

数学中集合字母的含义如下:1、Q表示有理数集;2、N表示非负整数集{0,1,2,3……};3、Z表示整数集合{-1,0,1……};4、R:实数集合(包括有理数和无理数);5、N*/N+:正整数集合{1,2,3,……};6、C:复数集合;7、∅:空集(不含有任何元素的集合);8、Q+:正有理数集合;9、Q-:负有理数集合;10、R+:正实数集合;11、R-:负实数集合。集合的性质1、确定性给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。2、互异性一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。3、无序性一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
2023-05-24 10:32:401

集合的意思

集合是一个多义词,分别介绍如下:1数学概念:集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。2.计算机科学术语:计算机科学中,集合是一组可变数量的数据项(也可能是0个)的组合,这些数据项可能共享某些特征,需要以某种操作方式一起进行操作。列表(或数组)通常不被认为是集合,因为其大小固定,但事实上它常常在实现中作为某些形式的集合使用。集合的种类包括列表,集,多重集,树和图。枚举类型可以是列表或集。3.汉语词语:集合,分散的人或事物聚集到一起,使聚集,紧急集合。指若干具有共同属性的事物的总体。如全部自然数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。4.微课课程:借助直观图,使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
2023-05-24 10:33:081

什么是集合

集合是:具有相同属性的事物的全体。数学中,把具有相同属性的事物的全体称为集合。集合概念用来指称集合体,是由许多对象有机聚合构成的集合体,集合体与其构成部分之间是整体与部分的关系。数学中,把具有相同属性的事物的全体称为集合,在某一思维对象领域,思维对象可以有两种不同的存在方式。一种是同类分子有机结合构成的集合体,另一种是具有相同属性对象组成的类。集合是现代数学中一个重要的基本概念。集合论的基本理论直到十九世纪末才被创立,现在已经是数学教育中一个普遍存在的部分,在小学时就开始学习了。其他含义集合是具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:分散的人或事物聚集到一起;使聚集:紧急集合、数学名词。一组具有某种共同性质的数学元素:有理数的集合、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。它有几个性质,像确定性、互异性、无序性这都是集合的基本性质。
2023-05-24 10:33:321

什么叫集合?

集合的概念  某些指定的对象集在一起就是集合。  一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员)。  元素与集合的关系:  元素与集合的关系有“属于”与“不属于”两种。  集合与集合之间的关系:  某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。  『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A �6�7 B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A �6�3 B。 中学教材课本里将 �6�3 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。    真子集所有男人的集合是所有人的集合的真子集。』  集合的三种运算法则:  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}   交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}  例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。  有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减1再相乘。48个。  无限集: 定义:集合里含有无限个元素的集合叫做无限集  有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。  差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。  注:空集包含于任何集合,但不能说“空集属于任何集合”.  补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}  空集也被认为是有限集合。  例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。  在信息技术当中,常常把CuA写成~A。  集合元素的性质:  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。  2.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。  3.无序性:{a,b,c}{c,b,a}是同一个集合。  4.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。  5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。  集合有以下性质:若A包含于B,则A∩B=A,A∪B=B  集合的表示方法:  集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。 将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。  常用的有列举法和描述法。  1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}  2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}  3.图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。  4.自然语言  常用数集的符号:  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N  (2)非负整数集内排除0的集,也称正整数集,记作N或N*  (3)全体整数的集合通常称作整数集,记作Z  (4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}  (5)全体实数的集合通常简称实数集,记作R  (6)复数集合计作C  集合的运算:  集合交换律  A∩B=B∩A  A∪B=B∪A  集合结合律  (A∩B)∩C=A∩(B∩C)  (A∪B)∪C=A∪(B∪C)  集合分配律  A∩(B∪C)=(A∩B)∪(A∩C)  A∪(B∩C)=(A∪B)∩(A∪C)  集合德.摩根律  Cu(A∩B)=CuA∪CuB  Cu(A∪B)=CuA∩CuB  集合“容斥原理”  在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3  card(A∪B)=card(A)+card(B)-card(A∩B)  card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)  1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。  集合吸收律  A∪(A∩B)=A   A∩(A∪B)=A  集合求补律  A∪CuA=U  A∩CuA=Φ  设A为集合,把A的全部子集构成的集合叫做A的幂集  德摩根律 A-(BUC)=(A-B)∩(A-C)  A-(B∩C)=(A-B)U(A-C)  ~(BUC)=~B∩~C   ~(B∩C)=~BU~C  ~Φ=E ~E=Φ  特殊集合的表示  复数集 C  实数集 R  整数集 Z  有理数集 Q  自然数集 N
2023-05-24 10:33:581

集合的分类是什么?

1、有限集:含有有限个元素的集合。2、无限集:含有无限个元素的集合。3、空集:不含任何元素的集合记作 ∅。集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。相关信息:有些集合可以用一些特殊符号表示,举例如下:N:非负整数集合或自然数集合{0,1,2,3,…}。N*或N+:正整数集合{1,2,3,…}。Z:整数集合{…,-1,0,1,…}。Q:有理数集合。Q+:正有理数集合。Q-:负有理数集合。R:实数集合(包括有理数和无理数)。R+:正实数集合。R-:负实数集合。C:复数集合。∅ :空集(不含有任何元素的集合)。
2023-05-24 10:34:461

集合的概念

题库内容:集合的解释[aggregate] 一组具有 某种 共同 性质 的数学元素 有理数的集合 详细解释 (1).分散的人或事物 聚集 在一起;使聚集。 《汉书·匈奴传下》 :“发三十万众,具三百日粮……计其道里,一年 尚未 集合,兵先至者聚居 暴露 。” 章炳麟 《文学说例》 :“若 《释诂》 所陈……诚以八代 殊名 ,方国异语,靡不集合焉尔。” 魏巍 《东方》 第四部第十八章:“ * 上 井冈山 ,开头人很少,吹一声哨子就集合起来了。”如:集合队伍。 (2).集体,团体。 鲁迅 《书信集·致许寿裳》 :“惟近来出杂志一种曰 《新潮》 ,颇强人意,只是二十人 左右 之小集合所作,间亦杂教员 著作 。” (3).数学 名词 。指 若干 具有共同属性的事物的总体。如全部 自然 数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。简称“集”。 词语分解 集的解释 集 í 群鸟栖止于树上:“黄鸟于飞,集于灌木”。 聚合,会合:聚集。集合。集会。集体。集团。集训。集散。集资。集中。集 大成 。集腋成裘。 会合 许多 著作编成的书:集子。文集。诗集。选集。全集。 大型图书中 合的解释 合 é 闭,对拢:合眼。合抱。珠连璧合。貌合神离。 聚集:合力。合办。合股。合资。 不违 背,一事物与另一事物 相应 或相符:合格。合法。 情投意合 。 应该:合该。合当。“ 文章 合为时而著,诗歌合为时而作”。
2023-05-24 10:35:061

集合的定义

集合(简称集)是基本的数学概念,是集合论的研究对象,指具有某种特定性质的事物的总体(在最原始的集合论、朴素集合论中的定义,集合就是“一堆东西”。),集合里的事物,叫作元素。 现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。概念集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。
2023-05-24 10:35:141

什么是集合数学

集合一般是在高中一年级的基础数学章节。是高中数学函数的基础哦~~关于集合的概念:点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.总之,集合:某些指定的对象集在一起就形成一个集合。集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。例如,由方程 的所有解组成的集合,可以表示为{-1,1}.注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。格式:{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合。例如,不等式 的解集可以表示为: 或 所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,可以省去竖线及左边部分。如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。注:何时用列举法?何时用描述法?(1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。(2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。如:集合{1000以内的质数}
2023-05-24 10:35:231

什么是集合

集合定义:我们把研究对象统称为元素,把一些元素组成的总体叫做集合。在集合中元素是研究集合的关键所在,集合元素具有三个特征,分别是确定性,互异性,无序性 确定性:给定的集合,它的元素必须是确定的。互异性:一个给定的集合中的元素是互不相同的。无序性:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的,没有元素顺序的要求。
2023-05-24 10:35:462

集合怎么算

(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。(2)并集:给定两个集合A,B,把他们所有的素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。(3)相对补集:若A和B 是集合,则A 在B 中的相对补集是这样一个集合:其元素属于B但不属于A,B - A = { x| x∈B且x∉A}。(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。符号语言:若∀a∈A,均有a∈B,则A⊆B。
2023-05-24 10:36:021

集合是什么意思

集合1、分散的人或事物聚集在一起;使聚集。2、集体,团体。3、数学名词。指若干具有共同属性的事物的总体。如全部自然数就成一个自然数的集合,一个单位的全体人员就成一个该单位全体人员的集合。简称“集”。
2023-05-24 10:36:362

什么是集合?有什么用处?

在离散数学中,集合A、B, 记作xRy,就是集合。用来定义二元关系。数学上,二元关系用于讨论两个数学对象的联系。诸如算术中的「大于」及「等于」,几何学中的"相似"。二元关系有时会简称关系,但一般而言关系不必是二元的。集合U和A的相对差集,符号为U  A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3}  {2,3,4} 为{1} ,而相对差集{2,3,4}  {1,2,3} 为{4} 。集合A和B的对称差,符号为A △ B或A⊕B,是指只在集合A及B中的其中一个出现,没有在其交集中出现的元素。扩展资料集合X与集合Y上的二元关系是R=(X,Y,G(R)),其中G(R),称为R的图,是笛卡儿积X×Y的子集。若 (x,y) ∈G(R) ,则称x是R-关系于y,并记作xRy或R(x,y)。否则称x与y无关系R。但经常地我们把关系与其图等同起来,即:若RX×Y,则R是一个关系。
2023-05-24 10:36:421

高一数学中 集合是什么

集合的概念  某些指定的对象集在一起就是集合。 集合一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员)。 元素与集合的关系  元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系  某些指定的对象集在一起就成为一个集合 集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。   『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A �6�7 B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A �6�3 B。 中学教材课本里将 �6�3 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。   所有男人的集合是所有人的集合的真子集。』 集合集合的三种运算法则  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}   交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}   例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。 集合有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减1再相乘。48个。   无限集: 定义:集合里含有无限个元素的集合叫做无限集   有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。   差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。   注:空集包含于任何集合,但不能说“空集属于任何集合”. 补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}   空集也被认为是有限集合。   例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。   在信息技术当中,常常把CuA写成~A。 集合集合元素的性质  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。   2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。   3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。   4.无序性:{a,b,c}{c,b,a}是同一个集合。   5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。   6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。 集合集合有以下性质  若A包含于B,则A∩B=A,A∪B=B 集合的表示方法  集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则 集合用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。 将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。   常用的有列举法和描述法。   1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}   2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}   3.图示法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。 集合4.自然语言   常用数集的符号:   (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N*   (2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-   (3)全体整数的集合通常称作整数集,记作Z   (4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)   (5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数)   (6)复数集合计作C   集合的运算:   集合交换律   A∩B=B∩A   A∪B=B∪A   集合结合律   (A∩B)∩C=A∩(B∩C)   (A∪B)∪C=A∪(B∪C)   集合分配律   A∩(B∪C)=(A∩B)∪(A∩C)   A∪(B∩C)=(A∪B)∩(A∪C)   集合德.摩根律 集合Cu(A∩B)=CuA∪CuB   Cu(A∪B)=CuA∩CuB   集合“容斥原理”   在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3   card(A∪B)=card(A)+card(B)-card(A∩B)   card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)   1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。   集合吸收律   A∪(A∩B)=A   A∩(A∪B)=A   集合求补律   A∪CuA=U   A∩CuA=Φ   设A为集合,把A的全部子集构成的集合叫做A的幂集   德摩根律 A-(BUC)=(A-B)∩(A-C)   A-(B∩C)=(A-B)U(A-C)   ~(BUC)=~B∩~C   ~(B∩C)=~BU~C   ~Φ=E ~E=Φ   特殊集合的表示   复数集 C   实数集 R   正实数集 R+   负实数集 R-   整数集 Z   正整数集 Z+   负整数集 Z-   有理数集 Q   正有理数集 Q+   负有理数集 Q-   自然数集 N   不含0自然数集 N* [编辑本段]模糊集合  用来表达模糊性概念的集合。 又称模糊集、模糊子集。普通的集合是指具有某种属性的对象的全体。这种属性所表达的概念应该是清晰的,界限分明的。因此每个对象对于集合的隶属关系也是明确的,非此即彼。但在人们的思维中还有着许多模糊的概念,例如年轻、很大、暖和、傍晚等,这些概念所描述的对象属性不能简单地用“是”或“否”来回答,模糊集合就是指具有某个模糊概念所描述的属性的对象的全体。由于概念本身不是清晰的、界限分明的,因而对象对集合的隶属关系也不是明确的、非此即彼的。这一概念是美国加利福尼亚大学控制论专家L.A.扎德于 1965 年首先提出的。模糊集合这一概念的出现使得数学的思维和方法可以用于处理模糊性现象,从而构成了模糊集合论(中国通常称为模糊性数学)的基础。
2023-05-24 10:37:111

集合的分类有哪些

⑴有限集:含有有限个元素的集合.⑵无限集:含有无限个元素的集合.⑶空集:不含任何元素的集合.记作 ∅扩展资料:有些集合可以用一些特殊符号表示,举例如下:N:非负整数集合或自然数集合{0,1,2,3,…}N*或N+:正整数集合{1,2,3,…}Z:整数集合{…,-1,0,1,…}Q:有理数集合Q+:正有理数集合Q-:负有理数集合R:实数集合(包括有理数和无理数)R+:正实数集合R-:负实数集合C:复数集合∅ :空集(不含有任何元素的集合)
2023-05-24 10:37:201

什么是数学中的“集合”?

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全体整数的集合通常称作整数集,记作Z (4)全体有理数的集合通常简称有理数集,记作Q (5)全体实数的集合通常简称实数集,记作R (6)复数集合计作C {}、∈(属于) ∪(并集) ∩(交集)、Cu(补集)、空集、包含等
2023-05-24 10:39:561

高中数学中,集合有哪些分类?

集合有非负数集(自然数集):N。正整数集:N+,N*。整数集:Z。有理数集Q。实数集R。
2023-05-24 10:40:033

集合定义是什么

集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。由一个或多个元素所构成的叫做集合。若x是集合A的元素,则记作x∈A。集合中的元素有三个特征:1.确定性(集合中的元素必须是确定的) 2.互异性(集合中的元素互不相同。例如:集合A={1,a},则a不能等于1) 3.无序性(集合中的元素没有先后之分)。
2023-05-24 10:40:311

什么是集合?什么是集合的元素?

数学中的基本概念,集合论的主要研究对象。一定范围的、确定的、可区别的事物,当作一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.  (3)元素:集合中每个对象叫做这个集合的元素.  集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……元素与集合的关系(1)属于: 如果a是集合A的元素,就说a属于A,记作a∈A  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a¢A 要注意“∈”的方向,不能把a∈A颠倒过来写.
2023-05-24 10:40:461

集合定义

把具有某种共同特性的事物放在一起就是一个集合。这考试不会考的 理解就行
2023-05-24 10:41:113

高一数学集合的格式怎么写

{x丨取值范围}
2023-05-24 10:42:105

集合与集合的表示方法

数学集合在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念,也是不能被其他概念定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。现代数学还用“公理”来规定集合。最基本公理例如:外延公理:对于任意的集合S1和S2,S1=S2当且仅当对于任意的对象a,都有若a∈S1,则a∈S2;若a∈S2,则a∈S1。无序对集合存在公理:对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b。由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}。 由于a,b是任意两个对象,它们可以相等,也可以不相等。当a=b时,{a,b},可以记做或,并且称之为单元集合。空集合存在公理:存在一个集合,它没有任何元素。一、集合的概念一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.元素与集合的关系:元素与集合的关系有“属于”与“不属于”两种。集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减1再相乘。48个。无限集: 定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集、真子集都具有传递性。『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,写作 A B。所有男人的集合是所有人的集合的真子集。』二、集合元素的性质1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。3.无序性:{a,b,c}{c,b,a}是同一个集合。4.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。集合有以下性质:若A包含于B,则A∩B=A,A∪B=B集合的表示方法:常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。三、常用数集的符号(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q(5)全体实数的集合通常简称实数集,记作R(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3card(A∪B)=card(A)+card(B)-card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求补律A∪CuA=SA∩CuA=Φ设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律: A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~BU~C~(B∩C)=~B∩~C~Φ=E ~E=Φ
2023-05-24 10:42:303

什么是以集合为元素的集合

任何集合是它自身的子集. 元素与集合的关系:元素与集合的关系有“属于”与“不属于”两种。 集合的分类: 并集:以属于A或属于B的元素为元素的集合称为A
2023-05-24 10:42:482

集合是什么意思数学

集合是什么意思数学介绍如下:集合是具有相同属性的事物的全体。数学中,把具有相同属性的事物的全体称为集合。集合概念用来指称集合体,是由许多对象有机聚合构成的集合体,集合体与其构成部分之间是整体与部分的关系。数学中,把具有相同属性的事物的全体称为集合,在某一思维对象领域,思维对象可以有两种不同的存在方式。一种是同类分子有机结合构成的集合体,另一种是具有相同属性对象组成的类。集合是现代数学中一个重要的基本概念。集合论的基本理论直到十九世纪末才被创立,现在已经是数学教育中一个普遍存在的部分,在小学时就开始学习了。其他含义集合是具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:分散的人或事物聚集到一起;使聚集:紧急集合、数学名词。一组具有某种共同性质的数学元素:有理数的集合、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。它有几个性质,像确定性、互异性、无序性这都是集合的基本性质。
2023-05-24 10:43:011

集合的相关概念

集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。现代数学还用"公理"来规定集合。最基本公理例如:外延公理:对于任意的集合S1和S2,S1=S2当且仅当对于任意的对象a,都有若a∈S1,则a∈S2;若a∈S2,则a∈S1。无序对集合存在公理:对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b。由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}。 由于a,b是任意两个对象,它们可以相等,也可以不相等。当a=b时,{a,b},可以记做或,并且称之为单元集合。空集合存在公理:存在一个集合,它没有任何元素。
2023-05-24 10:43:391

什么是集合 集合解释

1、集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。 2、集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。若x是集合A的元素,则记作x∈A。 3、集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换。
2023-05-24 10:43:451

如何判断是否为集合?

有属于关系,有元素。有包含关系。集合元素:1.确定性2.互异性3.无序性
2023-05-24 10:44:512

集合的交集与并集是什么意思?

交集:表示方法∩,意思是两个集合中相同的元素,记忆方法:交集的符号就是一个圆拱门。并集:表示方法∪,意思是取两个集合的全部元素,记忆方法:并集的符号就是门倒过来。举例:(1)集合{1,2,3}和{2,3,4}的交集为{2,3}。即{1,2,3}∩{2,3,4}={2,3}。(2)数字9不属于质数集合{2,3,5,7,11, ...}和奇数集合{1,3,5,7,9,11, ...}的交集。即9∉{x|x是质数}∩{x|x是奇数}。运算交集的运算形状:①A∩B=B∩A②A∩∅=∅③A∩A=A④A∩B⊆A,A∩B⊆B⑤A∩B=A⇔A⊆B⑥A∩B=∅,两个集合没有相同元素⑦A∩(∁UA)=∅⑧∁U(A∩B)=(∁UA)∪(∁UB)并集的运算形状:①A∪B=B∪A②A∪∅=A③A∪A=A④A∪B⊇A,A∪B⊇B⑤A∪B=B⇔A⊆B⑥A∪B=∅,两个集合都是空集⑦A∪(CUA)=U⑧CU(A∪B)=(CUA)∩(CUB)
2023-05-24 10:45:031

集合/集合是什么意思

以集合为元素的集合。请及时采纳正确答案,下次还可能帮您,您采纳正确答案,您也可以得到财富值,谢谢。
2023-05-24 10:45:391

集合的概念知识点归纳有哪些?

集合的概念和知识点归纳如下:1、概念:集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。2、地位:集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。3、特性:(1)确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。(2)互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。(3)无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。4、表示方法:表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。5、运算定律:(1)交换律:A∩B=B∩A;A∪B=B∪A。(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。(3)分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。(4)对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。(5)同一律:A∪∅=A;A∩U=A。(6)求补律:A∪A"=U;A∩A"=∅。(7)对合律:A""=A。(8)等幂律:A∪A=A;A∩A=A。(9)零一律:A∪U=U;A∩∅=∅。(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A。集合的容斥原理(特殊情况):card(A∪B)=card(A)+card(B)-card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。以上内容参考:百度百科-集合
2023-05-24 10:45:471

何为集合,什么叫集合?

集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。一般的我们把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。希望对你有帮助,请采纳
2023-05-24 10:45:591

集合与集合的关系

集合与集合的关系:如果集合A的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A包含于B或B包含A。空集被任一个集合所包含,就是任何集合的子集。如果集合A的元素是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A真包含于B或B真包含A。集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。包含是集合与集合之间的从属关系,也叫子集关系。基本含义近同于蕴含、蕴涵、包涵,关系形容词。
2023-05-24 10:46:051

集合的定义是什么???

把所研究的对象统称为元素,把一些元素组成的总体叫做集合。
2023-05-24 10:46:272

集合与集合的表示方法

  集合定义:一般的,我们把研究对象统称为元素,把一些元素所组成的总体称为集合。   集合的表示方法:   1、列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。   2、描述法:常用于表示无限集合,把集合中元素的公共属性用文字、符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。
2023-05-24 10:46:341

集合都有哪些运算?

集合的运算是:交集、并集、相对补集、绝对补集、子集。集合简称集,是集合论的主要研究对象。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。集合交换律:A∩B=B∩A、A∪B=B∪A集合结合律:(A∩B)∩C=A∩(B∩C)、(A∪B)∪C=A∪(B∪C)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C)、A∪(B∩C)=(A∪B)∩(A∪C)集合的特性1、确定性给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。2、互异性一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。3、无序性一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
2023-05-24 10:46:402