汉邦问答 / 问答 / 问答详情

高一课本中关于蛋白质的组成结构的问题

2023-08-08 09:24:34
TAG: 关于 高一
水元素sl

分类: 教育/学业/考试 >> 高考

问题描述:

高一课本中关于蛋白质的组成结构的讲解,越详细越好

解析:

(一)氨基酸在蛋白质分子中的连接方式

1.肽键

蛋白质分子中的氨基酸之间是通过肽键相连的,—个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合,即形成肽键(酰胺键,图2-1-2)。

2.肽与多肽链

图2-1-2 肽与肽键

氨基酸通过肽键(-CO-NH-)相连而形成的化合物称为肽(peptide)。由两个氨基酸缩合成的肽称为二肽,三个氨基酸缩合成三肽,以此类推。一般由十个以下的氨基酸缩合成的肽统称为寡肽,由十个以上氨基酸形成的肽被称为多肽(polypeptide)或多肽链。

氨基酸在形成肽链后,氨基酸的部分基团已参加肽键的形成,已经不是完整的氨基酸,称为氨基酸残基。肽键连接各氨基酸残基形成肽链的长链骨架,即…Cα-CO-NH-Cα…结构称为多肽主链。各氨基酸侧链基团称为多肽侧链。每个肽分子都有一个游离的α-NH2末端(称氨基末端或N端)和一个游离α-COOH末端(称羧基末端或C端)。每条多肽链中氨基酸顺序编号从N端开始。书写某多肽的简式时,—般将N端书写在左侧端。

(二)蛋白质分子的一级结构

1.蛋白质分子的一级结构

多肽链中氨基酸的排列顺序称为蛋白质的一级结构。氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础。1953年,英国生物化学家Fred Sanger报道了胰岛素(insulin)的一级结构,这是世界上第一个被确定一级结构的蛋白质(图2-1-3)。同年,Watson与Crick发现DNA的双螺旋结构。生物化学由此迈向了一个更高层次——分子生物学时代。

图2-1-3 人胰岛索的一级结构

(三)蛋白质分子的空间结构

蛋白质分子井非如一级结构那样是完全展开的“线状”,而是处于更高级的水平。天然蛋白质可折叠、盘曲成—定的空间结构(三维结构)。蛋白质的空间结构指蛋白质分子内各原子围绕某些共价键的旋转而形成的各种空间排布及相互关系,这种空间结构称为构象。按不同层次,蛋白质的高级结构可分为二,三和四级结构。

1.蛋白质的二级结构

多肽链主链中各原子在各局部的空间排布,即多肽链主链构象称为蛋白质的二级结构。

(1)形成二级结构的基础——肽键平面:20世纪30年代末,Pauling L和Corey R开始对肽进行x线结晶衍射图研究,以探索蛋白质的精细结构。他们测定了分子中各原子间的标准键长和键角,发现肽单元(主链的-CαCN-)呈刚性平面(rigid plane),即肽键平面(图2-1-4)。

图2-1-4 肽键平面和Cα“关节”示意图

由于C-N键具有部分双键性质,因此C=O和C—N均不能自由旋转。所以整个肽链的主链原子(-CαCN-CαCN-)中只有N-Cα和Cα-N之间的单键可以旋转,N -Cα之间的旋转角为φ (phi),Cα-C之间的旋转角为ψ(psi)。φ和ψ的大小就决定了Cα相邻两个肽键平面之间的相对位置关系,于是肽键平面就成为主链构象的结构基础。如每个氨基酸的ψ和φ已知,整个多肽链的主链构象就确定了。

(2)蛋白质二级结构的基本形式:蛋白质的肽链局部盘曲、折叠的主要有α-螺旋、β-折叠、β-转角和不规则卷曲等几种形式。

1) α-螺旋:肽链的某段局部盘曲成螺旋形结构,称为α-螺旋(图2-1-5)。 α-螺旋的特征是:①—般为右手螺旋;②每螺旋圈包含3.6个氨基酸残基,每个残基跨距为0.15nm,螺旋上升1圈的距离(螺距)为3.6×0.15=0.54nm; = 3 * GB3 ③螺旋圈之间通过肽键上的>C=O和-NH-间形成氢键以保持螺旋结构的稳定;④影响α-螺旋形成的主要因素是氨基酸侧链的大小、形状及所带电荷等性质。

图2-1-5 α-螺旋示意图

2)β-折叠:为—种比较伸展、呈锯齿状的肽链结构。两段以上的β-折叠结构平行排布并以氢键相连所形成的结构称为β-片层或β-折叠层。β-片层可分顺向平行(肽链的走向相同,即N、C端的方向一致)和逆向平行(两肽段走向相反)结构(图2-1-6)。

图2-1-6 β—折叠结构示意图

3) β-转角:此种结构指多肽链中出现的一种180°的转折。β-转角通常由4个氨基酸残基构成,由第1个残基的>C=O与第4个残基的-NH-形成氢键,以维持转折结构的稳定。

4)不规则卷曲:此种结构为多肽链中除以上几种比较规则的构象外,多肽链中其余规则性不强的—些区段的构象。

各种蛋白质依其一级结构特点在其多肽链的不同区段可形成不同的二级结构。如蜘蛛网丝蛋白中有很多α-螺旋及β-折叠层,也有β-转角和不规则卷曲(图2-1-7)。

图2-1-7 蜘蛛网丝蛋白

2.蛋白质的三级结构

多肽链中,各个二级结构的空间排布方式及有关侧链基团之间的相互作用关系,称为蛋白质的三级结构。换言之,蛋白质的三级结构系指每一条多肽链内所有原子的空间排布,即多肽链的三级结构=主链构象+侧链构象,三级结构是在二级结构的基础上由侧链相互作用形成的。

多肽链的侧链(也就是氨基酸的侧链)分为亲水性的极性侧链和疏水性的非极性侧链(详见氨基酸分类)。水介质中球状蛋白质的折叠总是倾向于把多肽链的疏水性侧链或疏水性基团埋藏在分子的内部。这一现象被称之为疏水作用或疏水效应(图2-1-8)。疏水作用的本质是疏水基团或疏水侧链出自避开水的需要而被迫相互靠近,并不是疏水基团之间有什么吸引力的缘故,因此,将疏水作用称之为“疏水键”是不正确的。疏水作用是维系蛋白质三级结构最主要的动力。除疏水作用外,维系蛋白质的三级结构的动力还有氢键、盐键(离子键)、范德华力和二硫键等。

图2-1-8 肌红蛋白三级结构

蛋白质中的肽键称为主键,氢键、盐键、疏水作用、离子键、二硫键等是副键(次级键,图2-1-9),副键因外力作用(如热)容易断裂,导致蛋白质变性失活。

图2-1-9 稳定和维系蛋白质三级结构的键

三级结构对于蛋白质的分子形状及其功能活性部位的形成起重要作用,通过三级结构的形成,可将肽链中某些局部的几个二级结构汇成“口袋”或“洞穴”状,这种结构称为结构域(domain),它们的核心部分多为疏水氨基酸构成,结合蛋白质的辅基常镶嵌在其中,这种结构域多半是蛋白质的活性部位。有的蛋白质分子中只有一个特异的结构域,有的则有多个结构域。最近,在很多蛋白质分子中发现有两段β-折叠之间通过一段α-螺旋相连而形成的球状结构,以及多个α-螺旋形成的螺旋束,或三个二硫键将肽链连接成的三环状结构等结构域与功能活性有密切关系。

3.蛋白质的四级结构

有的蛋白质分子由两条以上具有独立三级结构的肽链通过非共价键相连聚合而成,其中每一条肽链称为一个亚基或亚单位(subunit)。各亚基在蛋白质分子内的空间排布及相互接触称为蛋白质的四级结构。具有四级结构的蛋白质,其几个亚基的结构可以相同,也可以不同。如红细胞内的血红蛋白(hemoglobin,Hb,图2-1-10)是由4个亚基聚合而成的,4个亚基两两相同,即含两个α亚基和两个β亚基。在一定条件下,这种蛋白质分子可以解聚成单个亚基,亚基在聚合或解聚时对某些蛋白质具有调节活性的作用。有的蛋白质虽由两条以上肽链构成,但几条肽链之间是通过共价键(如二硫键)连接的,这种结构不属于四级结构,如前面提到过的胰岛素就是1例。

可以从这个网页看 *** kxxy.huzj/biochemistry-web/nursebiochem/web/chapt2/2_1_2

蛋白质的化学结构

蛋白质的化学结构如下:1、一级结构:组成蛋白质多肽链的线性氨基酸序列。2、二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。3、三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。4、四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。蛋白质结构是指蛋白质分子的空间结构。蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子,所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力和范德华力等非共价键,又称次级键。蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与般,蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。
2023-08-08 08:38:111

蛋白质的结构是怎样的?

蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。二级结构:多肽链的某些部分氨基酸残基周期性的空间排列。三级结构:在二级结构基础上进一步折叠成紧密的三维形式。四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列。氨基酸是由一个碳原子直接与一个氨基,一个羧基,一个氢原子相连,另一共价键与其它基团相连(通常叫做R基)
2023-08-08 08:38:331

蛋白质的基本结构有哪些

蛋白质的基本结构是氨基酸。蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。蛋白质的分子结构可划分为四级,以描述其不同的方面:一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。
2023-08-08 08:38:431

蛋白质分子结构是什么

  蛋白质分子结构是如下:   1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。主要化学键:肽键,有些蛋白质还包含二硫键。   2、蛋白质的高级结构:包括二级、三级、四级结构。蛋白质的高级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
2023-08-08 08:38:531

简述蛋白质的分子组成与结构。

【答案】:(1)蛋白质的分子组成 蛋白质是由氨基酸通过肽键连接起来的,一个α-氨基酸的氨基与另外一个α-氨基酸的羧基脱水缩合所形成的化合物称之为肽,连接两个氨基酸的化学键称之为肽键。肽可以是几个氨基酸分子组合而成,也可以是多个氨基酸分子。一般人们又把有多个α-氨基酸形成的肽称之为多肽。(2)蛋白质的结构 组成蛋白质的α-氨基酸的排列顺序、种类、数量和其侧链基团共同决定了蛋白质的一级结构。一条多肽链(一级结构)以螺旋或折叠的形式形成比较复杂的空间结构(二级结构);由于参与组成蛋白质氨基酸的侧链基团的作用,多肽链会进一步扭曲形成更复杂的空间结构(三级结构)。蛋白质一般是由一条多肽链或多条具有三级结构的多肽链组成的。体内许多蛋白质分子含有二条或多条肽链才能全面执行其功能,其分子中的每一条多肽链称为亚基,亚基单独存在时没有生物学活性,各个亚基呈特定的三维空间排布,并以非共价键相连接,形成蛋白质的四级结构。
2023-08-08 08:39:011

蛋白质的分子结构有哪些啊?

主要是有碳。氢。氧,氮,这些化学元素组成,蛋白质都是由多种氨基酸链接形成多聚体组成的
2023-08-08 08:39:122

蛋白质的结构及其多样性

关于蛋白质的结构及其多样性如下:蛋白质四级结构(1)一级结构指形成肽链的氨基酸序列,即氨基酸残基的排列顺序。(2)二级结构多肽链盘绕形成规律性结构。(3)三级结构多肽链三维构象,在二级结构基础上,进一步折叠成复杂分子结构。(4)四级结构数条完整三级结构多肽链连接而成聚合体结构。蛋白质结构的多样性(1)氨基酸的种类不同,构成的肽链不同。(2)氨基酸的数目不同,构成的肽链不同。(3)氨基酸的排列顺序不同,构成的肽链不同。(4)肽链的数目和空间结构不同,构成的蛋白质不同。两个蛋白质分子结构不同,则这两个蛋白质不是同种蛋白质。但并不是以上这四点同时具备才能确定两个蛋白质分子结构不同,而是只要具备以上其中的一点,这两个蛋白质的分子结构就不同。蛋白质功能的多样性蛋白质结构的多样性决定了蛋白质功能的多样性。蛋白质据功能分为结构蛋白和功能蛋白两大类,前者如人和动物的肌肉。后者如具有催化作用的绝大多数酶,具有免疫功能的抗体等。
2023-08-08 08:39:221

蛋白质的化学结构是什么

蛋白质的化学结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序. 主要化学键:肽键,有些蛋白质还包含二硫键. 2、蛋白质的高级结构:包括二级、三级、四级结构. 1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象.二级结构以一级结构为基础,多为短距离效应.可分为: α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm.α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形. β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定. β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸. 无规卷曲:无确定规律性的那段肽链. 主要化学键:氢键. 2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应. 主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力. 3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质.在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接.这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构.由一条肽链形成的蛋白质没有四级结构. 主要化学键:疏水键、氢键、离子键
2023-08-08 08:39:471

蛋白质的结构是什么

蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 蛋白质(胰岛素)一级结构蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键(离子键)维持的。此外共价二硫键在稳定某些蛋白质的构象方面也起着重要作用。 蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。
2023-08-08 08:39:571

蛋白质分子结构分几级,维持各级结构的化学键是什么

蛋白质分子结构可分为四级。一级结构是指蛋白质中氨基酸排列顺序,是平面结构,维持一级结构的化学键是肽键和二硫键。二级结构是指蛋白质多肽主链有一定周期性的,有氢键维持的局部空间结构,如α螺旋、β折叠等,维持的化学键是氢键、盐键等非共价键、以及疏水作用和范德华力。三级结构是多肽链上包括主链和侧脸在内所用原子在三维空间内的分布,但只含有一条多肽链,维持的化学键也是氢键、盐键等非共价键、以及疏水作用和范德华力。四级结构是由两个或两个以上相互关联的具有三级结构的亚单位组成,维持的化学键也是氢键、盐键等非共价键、以及疏水作用和范德华力。
2023-08-08 08:40:062

蛋白质有几级结构?

1.蛋白质分子的一级结构 多肽链中氨基酸的排列顺序称为蛋白质的一级结构.氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础.1953年,英国生物化学家Fred Sanger报道了胰岛素(insulin)的一级结构,这是世界上第一个被确定一级结构的蛋白质(图2-1-3).同年,Watson与Crick发现DNA的双螺旋结构.生物化学由此迈向了一个更高层次——分子生物学时代. (三)蛋白质分子的空间结构 蛋白质分子井非如一级结构那样是完全展开的“线状”,而是处于更高级的水平.天然蛋白质可折叠、盘曲成—定的空间结构(三维结构).蛋白质的空间结构指蛋白质分子内各原子围绕某些共价键的旋转而形成的各种空间排布及相互关系,这种空间结构称为构象.按不同层次,蛋白质的高级结构可分为二,三和四级结构. 1.蛋白质的二级结构 多肽链主链中各原子在各局部的空间排布,即多肽链主链构象称为蛋白质的二级结构. (1)形成二级结构的基础——肽键平面:20世纪30年代末,Pauling L和Corey R开始对肽进行x线结晶衍射图研究,以探索蛋白质的精细结构.他们测定了分子中各原子间的标准键长和键角,发现肽单元(主链的-CαCN-)呈刚性平面(rigid plane),即肽键平面(图2-1-4). 由于C-N键具有部分双键性质,因此C=O和C—N均不能自由旋转.所以整个肽链的主链原子(-CαCN-CαCN-)中只有N-Cα和Cα-N之间的单键可以旋转,N -Cα之间的旋转角为φ (phi),Cα-C之间的旋转角为ψ(psi).φ和ψ的大小就决定了Cα相邻两个肽键平面之间的相对位置关系,于是肽键平面就成为主链构象的结构基础.如每个氨基酸的ψ和φ已知,整个多肽链的主链构象就确定了. (2)蛋白质二级结构的基本形式:蛋白质的肽链局部盘曲、折叠的主要有α-螺旋、β-折叠、β-转角和不规则卷曲等几种形式. 1) α-螺旋:肽链的某段局部盘曲成螺旋形结构,称为α-螺旋(图2-1-5). α-螺旋的特征是:①—般为右手螺旋;②每螺旋圈包含3.6个氨基酸残基,每个残基跨距为0.15nm,螺旋上升1圈的距离(螺距)为3.6×0.15=0.54nm; = 3 * GB3 ③螺旋圈之间通过肽键上的>C=O和-NH-间形成氢键以保持螺旋结构的稳定;④影响α-螺旋形成的主要因素是氨基酸侧链的大小、形状及所带电荷等性质. 2)β-折叠:为—种比较伸展、呈锯齿状的肽链结构.两段以上的β-折叠结构平行排布并以氢键相连所形成的结构称为β-片层或β-折叠层.β-片层可分顺向平行(肽链的走向相同,即N、C端的方向一致)和逆向平行(两肽段走向相反)结构(图2-1-6). 3) β-转角:此种结构指多肽链中出现的一种180°的转折.β-转角通常由4个氨基酸残基构成,由第1个残基的>C=O与第4个残基的-NH-形成氢键,以维持转折结构的稳定. 4)不规则卷曲:此种结构为多肽链中除以上几种比较规则的构象外,多肽链中其余规则性不强的—些区段的构象. 各种蛋白质依其一级结构特点在其多肽链的不同区段可形成不同的二级结构.如蜘蛛网丝蛋白中有很多α-螺旋及β-折叠层,也有β-转角和不规则卷曲(图2-1-7). 2.蛋白质的三级结构 多肽链中,各个二级结构的空间排布方式及有关侧链基团之间的相互作用关系,称为蛋白质的三级结构.换言之,蛋白质的三级结构系指每一条多肽链内所有原子的空间排布,即多肽链的三级结构=主链构象+侧链构象,三级结构是在二级结构的基础上由侧链相互作用形成的. 多肽链的侧链(也就是氨基酸的侧链)分为亲水性的极性侧链和疏水性的非极性侧链(详见氨基酸分类).水介质中球状蛋白质的折叠总是倾向于把多肽链的疏水性侧链或疏水性基团埋藏在分子的内部.这一现象被称之为疏水作用或疏水效应(图2-1-8).疏水作用的本质是疏水基团或疏水侧链出自避开水的需要而被迫相互靠近,并不是疏水基团之间有什么吸引力的缘故,因此,将疏水作用称之为“疏水键”是不正确的.疏水作用是维系蛋白质三级结构最主要的动力.除疏水作用外,维系蛋白质的三级结构的动力还有氢键、盐键(离子键)、范德华力和二硫键等. 蛋白质中的肽键称为主键,氢键、盐键、疏水作用、离子键、二硫键等是副键(次级键,图2-1-9),副键因外力作用(如热)容易断裂,导致蛋白质变性失活. 三级结构对于蛋白质的分子形状及其功能活性部位的形成起重要作用,通过三级结构的形成,可将肽链中某些局部的几个二级结构汇成“口袋”或“洞穴”状,这种结构称为结构域(domain),它们的核心部分多为疏水氨基酸构成,结合蛋白质的辅基常镶嵌在其中,这种结构域多半是蛋白质的活性部位.有的蛋白质分子中只有一个特异的结构域,有的则有多个结构域.最近,在很多蛋白质分子中发现有两段β-折叠之间通过一段α-螺旋相连而形成的球状结构,以及多个α-螺旋形成的螺旋束,或三个二硫键将肽链连接成的三环状结构等结构域与功能活性有密切关系. 3.蛋白质的四级结构 有的蛋白质分子由两条以上具有独立三级结构的肽链通过非共价键相连聚合而成,其中每一条肽链称为一个亚基或亚单位(subunit).各亚基在蛋白质分子内的空间排布及相互接触称为蛋白质的四级结构.具有四级结构的蛋白质,其几个亚基的结构可以相同,也可以不同.如红细胞内的血红蛋白(hemoglobin,Hb,图2-1-10)是由4个亚基聚合而成的,4个亚基两两相同,即含两个α亚基和两个β亚基.在一定条件下,这种蛋白质分子可以解聚成单个亚基,亚基在聚合或解聚时对某些蛋白质具有调节活性的作用.有的蛋白质虽由两条以上肽链构成,但几条肽链之间是通过共价键(如二硫键)连接的,这种结构不属于四级结构,如前面提到过的胰岛素就是1例. 二级结构:多肽链的某些部分氨基酸残基周期性的空间排列. 三级结构:在二级结构基础上进一步折叠成紧密的三维形式. 四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列.
2023-08-08 08:40:301

蛋白质的结构是什么?

白质结构分为四级,功能:调节渗透压、修补构成身体组织、构成生理活性物质、供能、催化功能、信息交流、免疫功能、维持酸碱平衡、物质运输等。⑴一级结构指形成肽链的氨基酸序列,即氨基酸残基的排列顺序。⑵二级结构多肽链盘绕形成规律性结构。⑶三级结构多肽链三维构象,在二级结构基础上,进一步折叠成复杂分子结构。⑷四级结构数条完整三级结构多肽链连接而成聚合体结构。蛋白质功能(1)调节渗透压:调节组织液和血浆间水分不断进行交换以维持平衡。(2)修补和构成身体组织:人体的许多组织主要由蛋白质构成。受到损伤后,组织修复也需要蛋白质。(3)构成生理活性组织:激素、酶以及抗体等多数由蛋白质构成的。(4)供给能量:蛋白质可以分解产生能量。(5)催化功能:许多酶的主要成分为蛋白质,催化生物体各类化学反应。(6)信息交流:细胞对外界刺激产生相应作用的受体为蛋白质,从而起到信息交流作用。(7)免疫功能:人体存在许多免疫球蛋白,如IgA、IgG、IgM等。(8)维持酸碱平衡:蛋白质具有两性电离性质,根据ph值变化选择释放或吸收氢离子。(9)物质运输:细胞膜上蛋白质载体具有物质运输功能。
2023-08-08 08:40:411

简述蛋白质各个结构层次的基本特点

一级结构,是由氨基酸脱水缩合而成,呈长链状结构,二级结构,是螺旋和折叠,三级结构是球状,四级结构是由两个或两个以上的亚基构成。
2023-08-08 08:40:563

蛋白质结构组成分别是怎样的

蛋白质结构:是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮等化学元素组成。所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。蛋白质组成:蛋白质是一种化学结构非常复杂的化合物,它主要由碳、氢、氧、氮四种元素构成的,有的蛋白质还含有硫、磷、铁、碘和铜等其它元素。这些元素首先按照一定的结构构成氨基酸,许多氨基酸再以一定的方式组合成蛋白质,所以,氨基酸是构成蛋白质的基本单位。人体内的蛋白质是由20多种氨基酸组合而成的,各种氨基酸对机体都是必不可少的,其中有些所需的氨基酸在体内不能合成,必须由食物中的蛋白质提供,被称为“必需氨基酸”,主要有异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、苏氨酸、色氨酸、缬氨酸等8种,婴儿所必需的氨基酸除以上外,尚有组氨酸和精氨酸。其余的一些氨基酸也是体内需要的,但能够在体内合成,不一定通过食物供给,称为“非必需氨基酸”,其合成可由其它氨基酸转变而成,如体内酪氨酸(非必需氨基酸)可由苯丙氨酸(必需氨基酸)转变而成;胱氨酸(非必需氨基酸)可由蛋氨酸(必需氨基酸)转变而来。
2023-08-08 08:41:281

蛋白质的各级结构指什么?

蛋白质的一级结构是指蛋白质多肽链中氨基酸的排列顺序以及二硫键的位置. 蛋白质的二级结构指多肽链盘绕和折叠的方式,主要有α螺旋,β折叠,β转角和无规则卷曲. 超二级结构是指蛋白质分子中相邻的二级结构单元组合在一起,彼此相互作用,形成有规则,在空间上能辨认的二级结构组合体.如螺旋束,贝塔阿尔法贝塔单元,贝塔发夹等 结构域是指在较大的球状蛋白质分子中,含数百个氨基酸残基的一条多肽链往往在二级结构或超二级机构的基础上折叠成两个或多个紧密的球状构象. 蛋白质的三级结构是指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象. 蛋白质的四级结构是指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所形成的三维结构.
2023-08-08 08:41:391

蛋白质的化学结构是什么

蛋白质的化学结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。 1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。二级结构以一级结构为基础,多为短距离效应。可分为: α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。 β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定. β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸。 无规卷曲:无确定规律性的那段肽链。 主要化学键:氢键。 2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。 主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。 3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 主要化学键:疏水键、氢键、离子键
2023-08-08 08:41:491

蛋白质结构的结构种类

蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。蛋白质的分子结构可划分为四级,以描述其不同的方面: 一级结构:组成蛋白质多肽链的线性氨基酸序列。 二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。 三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。 四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。 蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。  蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。  蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。  蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。   具有二条或二条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构(quarternary structure)。其中,每个具有独立三级结构的多肽链单位称为亚基(subunit)。四级结构实际上是指亚基的立体排布、相互作用及接触部位的布局。亚基之间不含共价键,亚基间次级键的结合比二、三级结构疏松,因此在一定的条件下,四级结构的蛋白质可分离为其组成的亚基,而亚基本身构象仍可不变。  一种蛋白质中,亚基结构可以相同,也可不同。如烟草斑纹病毒的外壳蛋白是由2200个相同的亚基形成的多聚体;正常人血红蛋白A是两个α亚基与两个β亚基形成的四聚体;天冬氨酸氨甲酰基转移酶由六个调节亚基与六个催化亚基组成。有人将具有全套不同亚基的最小单位称为原聚体(protomer),如一个催化亚基与一个调节亚基结合成天冬氨酸氨甲酰基转移酶的原聚体。  某些蛋白质分子可进一步聚合成聚合体(polymer)。聚合体中的重复单位称为单体(monomer),聚合体可按其中所含单体的数量不同而分为二聚体、三聚体……寡聚体(oligomer)和多聚体(polymer)而存在,如胰岛素(insulin)在体内可形成二聚体及六聚体。
2023-08-08 08:42:001

蛋白质的化学结构

蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。蛋白质(protein)是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。蛋白质组成特点。蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)S(硫)、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。这些元素在蛋白质中的组成百分比约为:碳50% 氢7% 氧23% 氮16% 硫0~3% 其他微量。一切蛋白质都含N元素,且各种蛋白质的含氮量很接近,平均为16%;蛋白质系数:任何生物样品中每1g元N的存在,就表示大约有100/16=6.25g蛋白质的存在, 6.25常称为蛋白质常数。
2023-08-08 08:42:182

蛋白质的一二三四级结构

(1)氨基酸的排列顺序决定蛋白质的一级结构:蛋白质一级结构是理解蛋白质结构、作用机制以及生理功能的必要基础,在蛋白质分子中,从N-端至C-端的氨基酸排列顺序称为蛋白质一级结构,蛋白质一级结构中主要化学键是肽键。(2)蛋白质分子某一段肽链的局部空间结构构成了蛋白质的二级结构:蛋白质二级结构不涉及到氨基酸残基侧链的构象。构成二级结构的主要化学键是氢键,二级结构包括:α-螺旋、β-折叠、β转角和无规则卷曲。由于蛋白质分子量巨大,因此,一个蛋白质分子可含有多种二级结构或多个同种二级结构,而且在蛋白质分子内空间上相邻的2个以上二级结构还可以协同完成特定的功能,称为模体。(3)蛋白质三级结构指整条肽链中全部氨基酸残基的相对空间位置:也就是说整条肽链中所有原子在三维空间的排布位置,蛋白质三级结构的形成和稳定主要靠次级键如疏水键、盐键、氢键和范德华力等。分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能,称为结构域。(4)蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质四级结构:体内许多功能性蛋白质含两条或以上多肽链。每一条多肽链都有其完整的三级结构,称为亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。
2023-08-08 08:42:471

蛋白质有几级结构

四级吧
2023-08-08 08:43:334

蛋白质的结构和功能

氨基酸是组成蛋白质的基本单位。蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。一级结构:氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构,每种蛋白质都有唯一而确切的氨基酸序列。 二级结构:蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。蛋白质的二级结构主要依靠肽链中氨基酸残基亚氨基(—NH—)上的氢原子和羰基上的氧原子之间形成的氢键而实现的。 三级结构:在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的三级结构。肌红蛋白,血红蛋白等正是通过这种结构使其表面的空穴恰好容纳一个血红素分子。 四级结构:具有三级结构的多肽链按一定空间排列方式结合在一起形成的聚集体结构称为蛋白质的四级结构。如血红蛋白由4个具有三级结构的多肽链构成,其中两个是α-链,另两个是β-链,其四级结构近似椭球形状。
2023-08-08 08:43:491

蛋白质分子组成

蛋白质分子组成。一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的C=0和N-H基团间的氢键形成的稳定结构,主要为α螺旋和B折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用千描述由不同名肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。
2023-08-08 08:43:571

蛋白质的空间结构包括哪几级结构

蛋白质的空间结山没伍构包括的结构如下:1、一级结构:蛋白质多肽链中氨基酸的排列顺序逗或,以及二硫键的位置。2、二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。3、三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。4、四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。蛋白质的空间结构(高级结构)只有三种:二级结构、三级结构和四级结构。并不是所有的蛋白质都具有四级结构,只有多亚基蛋白才具有四级结构。所有的蛋白质都具有一级结构、二级结构察备和三级结构。蛋白质的高级结构根本上还是决定于蛋白质的一级结构。另外,蛋白质在二级结构的基础上还会形成超二级结构和结构域这2个局部空间结构。蛋白质结构的作用:1、构成生物体内基本物质,为生长及维持生命所必需。2、部分蛋白质可作为生物催化剂,即酶和激素。3、生物的免疫作用所必需的物资。4、有些蛋白质会导致食物过敏。
2023-08-08 08:44:051

蛋白质的基本组成单位是什么 其结构特征是什么

L-α氨基酸
2023-08-08 08:44:284

关于蛋白质分子结构,下列说法正确的有:

【答案】:C、D蛋白质都有的结构为一级结构,A错。蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序,也是蛋白质最基本的结构,B错。蛋白质的二级结构是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象,蛋白质二级结构的主要形式包括α-螺旋、β-折叠、β-转角和无规卷曲,C对。蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠次级键的维系固定所形成的特定空间结构称为蛋白质的三级结构也可以指整条肽链中全部氨基酸残基的相对空间位置,D对。
2023-08-08 08:44:491

组成蛋白质的基本单位是什么?其结构有何特点

蛋白质(占鲜重7-10%,干重50%)结构元素组成c、h、o、n,有的还有p、s等单体氨基酸(约20种,必需8种,非必需12种)化学结构由多个氨基酸分子脱水缩合而成,含有多个肽键的化合物,叫多肽。多肽呈链状结构,叫肽链。一个蛋白质分子含有一条或几条肽链。结构特点由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千差万别,因此蛋白质分子的结构是极其多样的。功能蛋白质的结构多样性决定了它的特异性/功能多样性。1.构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质;2.有些蛋白质有催化作用:如各种酶;3.有些蛋白质有运输作用:如血红蛋白、载体蛋白;4.有些蛋白质有调节作用:如胰岛素、生长激素等;5.有些蛋白质有免疫作用:如抗体。
2023-08-08 08:45:002

什么是蛋白质的空间结构

就是蛋白质分子的空间结构。
2023-08-08 08:45:245

蛋白质分子各层次空间结构

蛋白质是由20种不同的氨基酸组成的多肽链所构成它可以描述成4级层次结构。其中一级结构是指构成多肽链的氨基酸排列顺序它是一种一维的信息;二级结构是由相邻连续的若干氨基酸在局部空间折叠形成具有一定规则的片段子结构如螺旋结构、折叠结构和回折结构;三级结构是指由规则的二级结构进一步折叠形成的三维空间形状;四级结构是指若干条多肽链相互作用形成稳定的空间结构一维氨基酸序列在没有进行空间折叠前没有功能意义的二级结构是蛋白质空间结构的基本单元它们之间相互作用形成超二级结构它是一种从二级向三级结构转化的中间结构如结构超二级结构进一步组合形成一定功能的结构域可看成是最基本的功能实体但其尚不具备完整的生物活性空间自然折叠的三维形状最终决定蛋白质的功能。
2023-08-08 08:45:511

蛋白质的分子组成

主要有碳(50%~55%)、氢(6%~7%)、氧(19%~24%)、氮(13%~19%)和硫(0~4%)。有些蛋白质还含有少量磷或金属元素铁、铜、锌、锰、钴、钼等,个别蛋白质还含有碘。各种蛋白质的含氮量很接近,平均为16%。由于蛋白质是体内的主要含氮物质,因此测定生物样品的含氮量就可按下式推算出蛋白质大致含量。生物体结构越复杂,其蛋白质种类和功能也越繁多。具有复杂空间结构的蛋白质不仅是生物体的重要结构物质之一,而且承担着各种生物学功能,其动态功能包括化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控和肌收缩等功能。
2023-08-08 08:46:131

DNA和蛋白质的分子结构各有什么特点?

构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成。DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的 蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。 二级结构:多肽链的某些部分氨基酸残基周期性的空间排列。 三级结构:在二级结构基础上进一步折叠成紧密的三维形式。 四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列。
2023-08-08 08:46:401

总结蛋白质形成的结构层次

.蛋白质一级结构:氨基酸序列,化学键:肽键、二硫键蛋白质二级结构:蛋白质分子中局部肽段主链原子的相对空间位置,化学键:氢键蛋白质三级结构:在二级结构和模体等结构层次的基础上,由于侧链R基团的相互作用,整条肽链进行范围广泛的折叠和盘曲,化学键:疏水键、离子键、氢键、范德华力蛋白质四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局,化学键:疏水键、氢键、离子键满意请采纳谢谢
2023-08-08 08:46:471

蛋白质是由什么组成的

氨基酸脱水缩合形成多肽多肽链盘曲形成一定的空间结构组成蛋白质
2023-08-08 08:46:586

天然蛋白质分子均有三级结构?

蛋白质的三级结构指的是一条多肽链的总的三维形状。三维形状一般都可以大致说是球状的或纤维状的。天然蛋白质分子至少有一条肽链,所以天然蛋白质分子均有三级结构。
2023-08-08 08:47:181

蛋白质分子结构简式咋写的、、

R基放在中间的C上即(-CH-)上而且你写的是氨基酸,要氨基酸脱水缩合成蛋白质
2023-08-08 08:47:251

蛋白质的分子式是什么?简单点

蛋白质是一种十分复杂的结构,他的基本组成单位是氨基酸,而氨基酸又有许多种,其基本结构如下: NH2 | COOH--C--不同的氨基酸这个结构不同 | H 这是最基本的.
2023-08-08 08:47:351

蛋白质结构与功能。 知识联系。

蛋白质为生物高分子物质之一,具有三维空间结构,因而执行复杂的生物学功能。蛋白质结构与功能之间的关系非常密切。在研究中,一般将蛋白质分子的结构分为一级结构与空间结构两类。  一、蛋白质的一级结构  蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。  迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。  蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。  二、蛋白质的空间结构  蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。  蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。  (一)蛋白质的二级结构  蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。  1.肽键平面(或称酰胺平面,amide plane)。  Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:  (1)中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。  (2) 肽键的C及N周围三个键角之和均为360°,说明都处于一个平面上,也就是说六个原子基本上同处于一个平面,这就是肽键平面。肽链中能够旋转的只有α碳原子所形成的单键,此单键的旋转决定两个肽键平面的位置关系,于是肽键平面成为肽链盘曲折叠的基本单位。  (3) 肽键中的C-N既具有双键性质,就会有顺反不同的立体异构,已证实处于反位。  2.蛋白质主链构象的结构单元  1)α-螺旋Pauling等人对α-角蛋白(α-keratin)进行了X线衍射分析,从衍射图中看到有0.5~0.55nm的重复单位,故推测蛋白质分子中有重复性结构,并认为这种重复性结构为α-螺旋(α-helix)见图1-4.  α-螺旋的结构特点如下:  (1)多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。  (2)主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。  (3)相邻两圈螺旋之间借肽键中C=O和H桸形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主要键。  (4)肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。  2)β-片层结构Astbury等人曾对β-角蛋白进行X线衍射分析,发现具有0.7nm的重复单位。如将毛发α-角蛋白在湿热条件下拉伸,可拉长到原长二倍,这种α-螺旋的X线衍射图可改变为与β-角蛋白类似的衍射图。说明β-角蛋白中的结构和α-螺旋拉长伸展后结构相同。两段以上的这种折叠成锯齿状的肽链,通过氢键相连而平行成片层状的结构称为β-片层(β-pleated sheet)结构或称β-折迭(图1-5)。  β-片层结构特点是:  ①是肽链相当伸展的结构,肽链平面之间折叠成锯齿状,相邻肽键平面间呈110°角。氨基酸残基的R侧链伸出在锯齿的上方或下方。  ②依靠两条肽链或一条肽链内的两段肽链间的C=O与H梄形成氢键,使构象稳定。  ③两段肽链可以是平行的,也可以是反平行的。即前者两条链从“N端”到“C端”是同方向的,后者是反方向的。β-片层结构的形式十分多样,正、反平行能相互交替。  ④平行的β-片层结构中,两个残基的间距为0.65nm;反平行的β-片层结构,则间距为0.7nm.  3)β-转角  蛋白质分子中,肽链经常会出现180°的回折,在这种回折角处的构象就是β-转角(β-turn或β-bend)。β-转角中,第一个氨基酸残基的C=O与第四个残基的N桯形成氢键,从而使结构稳定(图1-6)。  4)无规卷曲  没有确定规律性的部分肽链构象,肽链中肽键平面不规则排列,属于松散的无规卷曲(random coil)。  (二)超二级结构和结构域  超二级结构(supersecondary structure)是指在多肽链内顺序上相互邻近的二级结构常常在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚集体。目前发现的超二级结构有三种基本形式:α螺旋组合(αα);β折叠组合(βββ)和α螺旋β折叠组合(βαβ),其中以βαβ组合最为常见。它们可直接作为三级结构的“建筑块”或结构域的组成单位,是蛋白质构象中二级结构与三级结构之间的一个层次,故称超二级结构。  结构域(domain)也是蛋白质构象中二级结构与三级结构之间的一个层次。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,形成二个或多个在空间上可以明显区别它与蛋白质亚基结构的区别。一般每个结构域约由100-200个氨基酸残基组成,各有独特的空间构象,并承担不同的生物学功能。如免疫球蛋白(IgG)由12个结构域组成,其中两个轻链上各有2个,两个重链上各有4个;补体结合部位与抗原结合部位处于不同的结构域。一个蛋白质分子中的几个结构域有的相同,有的不同;而不同蛋白质分子之间肽链中的各结构域也可以相同。如乳酸脱氢酶、3-磷酸甘油醛脱氢酶、苹果酸脱氢酶等均属以NAD+为辅酶的脱氢酶类,它们各自由2个不同的结构域组成,但它们与NAD+结合的结构域构象则基本相同。  (三)蛋白质的三级结构  蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折迭形成具有一定规律的三维空间结构,称为蛋白质的三级结构(tertiary structure)。蛋白质三级结构的稳定主要靠次级键,包括氢键、疏水键、盐键以及范德华力(Van der Wasls力)等。这些次级键可存在于一级结构序号相隔很远的氨基酸残基的R基团之间,因此蛋白质的三级结构主要指氨基酸残基的侧链间的结合。次级键都是非共价键,易受环境中pH、温度、离子强度等的影响,有变动的可能性。二硫键不属于次级键,但在某些肽链中能使远隔的二个肽段联系在一起,这对于蛋白质三级结构的稳定上起着重要作用。  现也有认为蛋白质的三级结构是指蛋白质分子主链折叠盘曲形成构象的基础上,分子中的各个侧链所形成一定的构象。侧链构象主要是形成微区(或称结构域domain)。对球状蛋白质来说,形成疏水区和亲水区。亲水区多在蛋白质分子表面,由很多亲水侧链组成。疏水区多在分子内部,由疏水侧链集中构成,疏水区常形成一些“洞穴”或“口袋”,某些辅基就镶嵌其中,成为活性部位。  具备三级结构的蛋白质从其外形上看,有的细长(长轴比短轴大10倍以上),属于纤维状蛋白质(fibrous protein),如丝心蛋白;有的长短轴相差不多基本上呈球形,属于球状蛋白质(globular protein),如血浆清蛋白、球蛋白、肌红蛋白,球状蛋白的疏水基多聚集在分子的内部,而亲水基则多分布在分子表面,因而球状蛋白质是亲水的,更重要的是,多肽链经过如此盘曲后,可形成某些发挥生物学功能的特定区域,例如酶的活性中心等。  (四)蛋白质的四级结构  具有二条或二条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构(quarternary structure)。其中,每个具有独立三级结构的多肽链单位称为亚基(subunit)。四级结构实际上是指亚基的立体排布、相互作用及接触部位的布局。亚基之间不含共价键,亚基间次级键的结合比二、三级结构疏松,因此在一定的条件下,四级结构的蛋白质可分离为其组成的亚基,而亚基本身构象仍可不变。  一种蛋白质中,亚基结构可以相同,也可不同。如烟草斑纹病毒的外壳蛋白是由2200个相同的亚基形成的多聚体;正常人血红蛋白A是两个α亚基与两个β亚基形成的四聚体;天冬氨酸氨甲酰基转移酶由六个调节亚基与六个催化亚基组成。有人将具有全套不同亚基的最小单位称为原聚体(protomer),如一个催化亚基与一个调节亚基结合成天冬氨酸氨甲酰基转移酶的原聚体。  某些蛋白质分子可进一步聚合成聚合体(polymer)。聚合体中的重复单位称为单体(monomer),聚合体可按其中所含单体的数量不同而分为二聚体、三聚体……寡聚体(oligomer)和多聚体(polymer)而存在,如胰岛素(insulin)在体内可形成二聚体及六聚体。  三、蛋白质的结构与功能的关系  (一)蛋白质的一级结构与其构象及功能的关系  蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。  Anfinsen以一条肽链的蛋白质核糖核酸酶为对象,研究二硫键的还原和氧化问题,发现该酶的124个氨基酸残基构成的多肽链中存在四对二硫键,在大量β-巯基乙醇和适量尿素作用下,四对二硫键全部被还原为桽H,酶活力也全部丧失,但是如将尿素和β-巯基乙醇除去,并在有氧条件下使巯基缓慢氧化成二硫键,此时酶的活力水平可接近于天然的酶。Anfinsen在此基础上认为蛋白质的一级结构决定了它的二级、三级结构,即由一级结构可以自动地发展到二、三级结构。  一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小(表1-2,表1-3)。表1-2 胰岛素分子中氨基酸残基的差异部分胰岛素来源  氨基酸残基的差异部分  A5  A6  A10  A30  人  Thr  Ser  Ile  Thr  猪  Thr  Ser  Ile  Ala  狗  Thr  Ser  Ile  Ala  兔  Thr  Ser  Ile  Ser  牛  Ala  Ser  Val  Ala  羊  Ala  Gly  Val  Ala  马  Thr  Gly  Ile  Ala  抹香猄  Thr  Ser  Ile  Ala  鲤猄  Ala  Ser  Thr  Ala  表1-3 细胞色素C分子中氨基酸残基的差异数目及分歧时间不同种属  氨基酸残基的差异数目  分歧时间(百万年)  人-猴  1  50-60  人-马  12  70-75  人-狗  10  70-75  猪-牛-羊  0     马-牛  3  60-65  哺乳类-鸡  10-15  280  哺乳类-猢  17-21  400  脊椎动物-酵母  43-48  1,100    促肾上腺皮质素(ACTH)和促黑激素(MSH)均垂体分泌的多肽激素。α-MSH和ACTh 4~10位的氨基酸结构与β-MSH的11~17位一样,故ACTH有较弱的MSH的生理作用(图1-12)。  在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因上遗传信息的突变。图1-12 ACTH、α-MSH和β-MSH一级结构比较正常  DNA  ……TGt GGG CTT CTT TTT……  mRNA  ACA CCC GAA GAA AAA  DNA(β亚基)  N端…苏-脯-谷-谷-赖……  异常  DNA   ……TGT GGG GAT CTT TTT……  mRNA  ……ACa CCC GUA GAA AAA……  hbs(β亚基)  N端…苏-脯-缬-谷-赖……    (二)蛋白质空间橡象与功能活性的关系  蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性后,构象复原,活性即能恢复。  在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现象称为蛋白质的别构效应(allostery)。  蛋白质(或酶)的别构效应,在生物体内普遍存在,这对物质代谢的调节和某些生理功能的变化都是十分重要的。  现以血红蛋白(hemoglobin,简写Hb)为例来说明构象与功能的关系。  血红蛋白是红细胞中所含有的一种结合蛋白质,它的蛋白质部分称为珠蛋白(globin),非蛋白质部分(辅基)称为血红素。Hb分子由四个亚基构成,每一亚基结合一分子血红素。正常成人Hb分子的四个亚基为两条α链,两条β链。α链由141个氨基酸残基组成,β链由146个氨基酸残基组成,它们的一级结构均已确定。每一亚基都具有独立的三级结构,各肽链折叠盘曲成一定构象,β亚基中有8个α-螺旋区(分别称A、B……H螺旋区),α亚基中有7个α-螺旋区。在此基础上肽链进一步折叠形成球状,依赖侧链间形成的各种次级键维持稳定,使之球形表面为亲水区,球形向内,在E和F螺旋段间的20多个巯水氨基酸侧链构成口袋形的疏水区,辅基血红素就嵌接在其中,α亚基和β亚基构象相似,最后,四个亚基α2β2聚合成具有四级结构的Hb分子。在此分子中,四个亚基沿中央轴排布四方,两α亚基沿不同方向嵌入两个β亚基间,各亚基间依多种次级健联系,使整个分子呈球形,这些次级键对于维系Hb分子空间构象有重要作用,例如在四亚基间的8对盐键,它们的形成和断裂将使整个分子的空间构象发生变化。  ABCDEFGH分别代表不同的α-螺旋区。共有八个螺旋区;阿拉伯数字代表在该区氨基酸残基的序号;a-螺旋区之间的移行部位为无规卷曲,用AB,CD,EF,FG…等表示。C1,E7,C5,CF,C3,E3,的中间为血红素,其中较大的黑点代表Fe2+.  Hb在体内的主要功能为运输氧气,而Hb的别位效应,极有利于它在肺部与O2结合及在周围组织释放O2.  Hb是通过其辅基血红素的Fe++与氧发生可逆结合的,血红素的铁原子共有6个配位键,其中4个与血红素的吡咯环的N结合,一个与珠蛋白亚基F螺旋区的第8位组氨酸(F8)残基的咪唑基的N相连接,空着的一个配位键可与O2可逆地结合,结合物称氧合血红蛋白。  在血红素中,四个吡咯环形成一个平面,在未与氧结合时Fe++的位置高于平面0.7,一旦O2进入某一个α亚基的疏水“口袋”时,与Fe++的结合会使Fe++嵌入四吡咯平面中,也即向该平面内移动约0.75,铁的位置的这一微小移动,牵动F8组氨酸残基连同F螺旋段的位移,再波及附近肽段构象,造成两个α亚基间盐键断裂,使亚基间结合变松,并促进第二亚基的变构并氧合,后者又促进第三亚基的氧合使Hb分子中第四亚基的氧合速度为第一亚基开始氧合时速度的数百倍。此种一个亚基的别构作用,促进另一亚基变构的现象,称为亚基间的协同效应(cooperativity),所以在不同氧分压下,Hb氧饱和曲线呈“S”型。
2023-08-08 08:47:451

由氨基酸形成蛋白质的结构层次?

蛋白质是具有特定构象的大分子,为研究方便,将蛋白质结构分为四个结构水平,包括一级结构、二级结构、三级结构和四级结构.一般将二级结构、三级结构和四级结构称为三维构象或高级结构. 一级结构:氨基酸排列顺序 二级结构:指蛋白质多肽链本身的折叠和盘绕的方式.二级结构主要有α-螺旋、β-折叠、β-转角.常见的二级结构有α-螺旋和β-折叠.二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的,氢键是稳定二级结构的主要作用力. 三级结构:蛋白质分子处于它的天然折叠状态的三维构象.三级结构是在二级结构的基础上进一步盘绕,折叠形成的.指一条多肽链在二级结构的基础上,进一步盘绕,折叠,从而产生特定的空间结构.三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和静电作用维持的. 四级结构:在体内有许多蛋白质含有2条或2条以上多肽链,才能全面地执行功能.没一条多肽链都有其完完整的三级结构,称为亚基(subunit),亚基与亚基之间呈特定的三维空间分布,并以非共价键相链接,这种蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构
2023-08-08 08:47:531

蛋白质的结构特点?

蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。二级结构:多肽链的某些部分氨基酸残基周期性的空间排列。三级结构:在二级结构基础上进一步折叠成紧密的三维形式。四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列。
2023-08-08 08:48:032

蛋白质的分子结构

一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 蛋白质结构 蛋白质结构是指蛋白质分子的空间结构。蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子,所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。 蛋白质结构作用 1.构成生物体内基本物质,为生长及维持生命所必需; 2.部分蛋白质可作为生物催化剂,即酶和激素; 3.生物的免疫作用所必需的物资; 4.有些蛋白质会导致食物过敏。
2023-08-08 08:48:241

蛋白质分子结构分成几个层次

蛋白质分子结构分成几个层次蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。蛋白质的分子结构可划分为四级,以描述其不同的方面:一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。一级结构蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点。首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。二级结构蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。1.肽键平面(或称酰胺平面,amide plane)。Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,从一个肽键的周围来看,得知:(1)肽键中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。(2) 肽键的C及N周围三个键角之和均为360°,说明都处于一个平面上,也就是说六个原子基本上同处于一个平面,这就是肽键平面。肽链中能够旋转的只有α碳原子所形成的单键,此单键的旋转决定两个肽键平面的位置关系,于是肽键平面成为肽链盘曲折叠的基本单位。(3) 肽键中的C-N既具有双键性质,就会有顺反不同的立体异构,已证实处于反位。2.蛋白质主链构象的结构单元1)α-螺旋Pauling等人对α-角蛋白(α-keratin)进行了X线衍射分析,从衍射图中看到有0.5~0.55nm的重复单位,故推测蛋白质分子中有重复性结构,并认为这种重复性结构为α-螺旋(α-helix).α-螺旋的结构特点如下:①多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。②主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。③相邻两圈螺旋之间借肽键中C=O和H桸形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主要键。④肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。2)β-片层结构Astbury等人曾对β-角蛋白进行X线衍射分析,发现具有0.7nm的重复单位。如将毛发α-角蛋白在湿热条件下拉伸,可拉长到原长二倍,这种α-螺旋的X线衍射图可改变为与β-角蛋白类似的衍射图。说明β-角蛋白中的结构和α-螺旋拉长伸展后结构相同。两段以上的这种折叠成锯齿状的肽链,通过氢键相连而平行成片层状的结构称为β-片层(β-pleated sheet)结构或称β-折迭。β-片层结构特点是:①是肽链相当伸展的结构,肽链平面之间折叠成锯齿状,相邻肽键平面间呈110°角。氨基酸残基的R侧链伸出在锯齿的上方或下方。②依靠两条肽链或一条肽链内的两段肽链间的C=O与N-H形成氢键,使构象稳定。③两段肽链可以是平行的,也可以是反平行的。即前者两条链从“N端”到“C端”是同方向的,后者是反方向的。β-片层结构的形式十分多样,正、反平行能相互交替。④平行的β-片层结构中,两个残基的间距为0.65nm;反平行的β-片层结构,则间距为0.7nm.3)β-转角蛋白质分子中,肽链经常会出现180°的回折,在这种回折角处的构象就是β-转角(β-turn或β-bend)。β-转角中,第一个氨基酸残基的C=O与第四个残基的N-H之间形成氢键,从而使结构稳定。4)无规卷曲没有确定规律性的部分肽链构象,肽链中肽键平面不规则排列,属于松散的无规卷曲(random coil)。
2023-08-08 08:48:331

蛋白质的结构分为

蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。蛋白质的分子结构可划分为四级,以描述其不同的方面:一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的c=o和n-h基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。
2023-08-08 08:49:001

蛋白质分子结构是什么

蛋白质分子结构是如下:1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。主要化学键:肽键,有些蛋白质还包含二硫键。2、蛋白质的高级结构:包括二级、三级、四级结构。蛋白质的高级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。更多关于蛋白质分子结构是什么,进入:https://m.abcgonglue.com/ask/1bb5da1616109857.html?zd查看更多内容
2023-08-08 08:49:251

蛋白质的分子结构有哪些啊?

蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。蛋白质的分子结构可划分为四级,以描述其不同的方面:一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的c=o和n-h基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。
2023-08-08 08:49:351

简述蛋白质分子的化学结构

一个氨基和一个羧基连接在同一个碳原子上,碳原子还有一个氢和侧链基。
2023-08-08 08:49:463

简述蛋白质分子的化学结构

蛋白质的化学结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序.主要化学键:肽键,有些蛋白质还包含二硫键.2、蛋白质的高级结构:包括二级、三级、四级结构.1)蛋白质的二级结构:指蛋白质分子中某一段肽链...
2023-08-08 08:49:561

蛋白质的结构是什么?

白质结构分为四级,功能:调节渗透压、修补构成身体组织、构成生理活性物质、供能、催化功能、信息交流、免疫功能、维持酸碱平衡、物质运输等。⑴一级结构指形成肽链的氨基酸序列,即氨基酸残基的排列顺序。⑵二级结构多肽链盘绕形成规律性结构。⑶三级结构多肽链三维构象,在二级结构基础上,进一步折叠成复杂分子结构。⑷四级结构数条完整三级结构多肽链连接而成聚合体结构。蛋白质功能(1)调节渗透压:调节组织液和血浆间水分不断进行交换以维持平衡。(2)修补和构成身体组织:人体的许多组织主要由蛋白质构成。受到损伤后,组织修复也需要蛋白质。(3)构成生理活性组织:激素、酶以及抗体等多数由蛋白质构成的。(4)供给能量:蛋白质可以分解产生能量。(5)催化功能:许多酶的主要成分为蛋白质,催化生物体各类化学反应。(6)信息交流:细胞对外界刺激产生相应作用的受体为蛋白质,从而起到信息交流作用。(7)免疫功能:人体存在许多免疫球蛋白,如IgA、IgG、IgM等。(8)维持酸碱平衡:蛋白质具有两性电离性质,根据ph值变化选择释放或吸收氢离子。(9)物质运输:细胞膜上蛋白质载体具有物质运输功能。
2023-08-08 08:50:061

蛋白质有几级结构?

1.蛋白质分子的一级结构 多肽链中氨基酸的排列顺序称为蛋白质的一级结构.氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础.1953年,英国生物化学家Fred Sanger报道了胰岛素(insulin)的一级结构,这是世界上第一个被确定一级结构的蛋白质(图2-1-3).同年,Watson与Crick发现DNA的双螺旋结构.生物化学由此迈向了一个更高层次——分子生物学时代. (三)蛋白质分子的空间结构 蛋白质分子井非如一级结构那样是完全展开的“线状”,而是处于更高级的水平.天然蛋白质可折叠、盘曲成—定的空间结构(三维结构).蛋白质的空间结构指蛋白质分子内各原子围绕某些共价键的旋转而形成的各种空间排布及相互关系,这种空间结构称为构象.按不同层次,蛋白质的高级结构可分为二,三和四级结构. 1.蛋白质的二级结构 多肽链主链中各原子在各局部的空间排布,即多肽链主链构象称为蛋白质的二级结构. (1)形成二级结构的基础——肽键平面:20世纪30年代末,Pauling L和Corey R开始对肽进行x线结晶衍射图研究,以探索蛋白质的精细结构.他们测定了分子中各原子间的标准键长和键角,发现肽单元(主链的-CαCN-)呈刚性平面(rigid plane),即肽键平面(图2-1-4). 由于C-N键具有部分双键性质,因此C=O和C—N均不能自由旋转.所以整个肽链的主链原子(-CαCN-CαCN-)中只有N-Cα和Cα-N之间的单键可以旋转,N -Cα之间的旋转角为φ (phi),Cα-C之间的旋转角为ψ(psi).φ和ψ的大小就决定了Cα相邻两个肽键平面之间的相对位置关系,于是肽键平面就成为主链构象的结构基础.如每个氨基酸的ψ和φ已知,整个多肽链的主链构象就确定了. (2)蛋白质二级结构的基本形式:蛋白质的肽链局部盘曲、折叠的主要有α-螺旋、β-折叠、β-转角和不规则卷曲等几种形式. 1) α-螺旋:肽链的某段局部盘曲成螺旋形结构,称为α-螺旋(图2-1-5). α-螺旋的特征是:①—般为右手螺旋;②每螺旋圈包含3.6个氨基酸残基,每个残基跨距为0.15nm,螺旋上升1圈的距离(螺距)为3.6×0.15=0.54nm; = 3 * GB3 ③螺旋圈之间通过肽键上的>C=O和-NH-间形成氢键以保持螺旋结构的稳定;④影响α-螺旋形成的主要因素是氨基酸侧链的大小、形状及所带电荷等性质. 2)β-折叠:为—种比较伸展、呈锯齿状的肽链结构.两段以上的β-折叠结构平行排布并以氢键相连所形成的结构称为β-片层或β-折叠层.β-片层可分顺向平行(肽链的走向相同,即N、C端的方向一致)和逆向平行(两肽段走向相反)结构(图2-1-6). 3) β-转角:此种结构指多肽链中出现的一种180°的转折.β-转角通常由4个氨基酸残基构成,由第1个残基的>C=O与第4个残基的-NH-形成氢键,以维持转折结构的稳定. 4)不规则卷曲:此种结构为多肽链中除以上几种比较规则的构象外,多肽链中其余规则性不强的—些区段的构象. 各种蛋白质依其一级结构特点在其多肽链的不同区段可形成不同的二级结构.如蜘蛛网丝蛋白中有很多α-螺旋及β-折叠层,也有β-转角和不规则卷曲(图2-1-7). 2.蛋白质的三级结构 多肽链中,各个二级结构的空间排布方式及有关侧链基团之间的相互作用关系,称为蛋白质的三级结构.换言之,蛋白质的三级结构系指每一条多肽链内所有原子的空间排布,即多肽链的三级结构=主链构象+侧链构象,三级结构是在二级结构的基础上由侧链相互作用形成的. 多肽链的侧链(也就是氨基酸的侧链)分为亲水性的极性侧链和疏水性的非极性侧链(详见氨基酸分类).水介质中球状蛋白质的折叠总是倾向于把多肽链的疏水性侧链或疏水性基团埋藏在分子的内部.这一现象被称之为疏水作用或疏水效应(图2-1-8).疏水作用的本质是疏水基团或疏水侧链出自避开水的需要而被迫相互靠近,并不是疏水基团之间有什么吸引力的缘故,因此,将疏水作用称之为“疏水键”是不正确的.疏水作用是维系蛋白质三级结构最主要的动力.除疏水作用外,维系蛋白质的三级结构的动力还有氢键、盐键(离子键)、范德华力和二硫键等. 蛋白质中的肽键称为主键,氢键、盐键、疏水作用、离子键、二硫键等是副键(次级键,图2-1-9),副键因外力作用(如热)容易断裂,导致蛋白质变性失活. 三级结构对于蛋白质的分子形状及其功能活性部位的形成起重要作用,通过三级结构的形成,可将肽链中某些局部的几个二级结构汇成“口袋”或“洞穴”状,这种结构称为结构域(domain),它们的核心部分多为疏水氨基酸构成,结合蛋白质的辅基常镶嵌在其中,这种结构域多半是蛋白质的活性部位.有的蛋白质分子中只有一个特异的结构域,有的则有多个结构域.最近,在很多蛋白质分子中发现有两段β-折叠之间通过一段α-螺旋相连而形成的球状结构,以及多个α-螺旋形成的螺旋束,或三个二硫键将肽链连接成的三环状结构等结构域与功能活性有密切关系. 3.蛋白质的四级结构 有的蛋白质分子由两条以上具有独立三级结构的肽链通过非共价键相连聚合而成,其中每一条肽链称为一个亚基或亚单位(subunit).各亚基在蛋白质分子内的空间排布及相互接触称为蛋白质的四级结构.具有四级结构的蛋白质,其几个亚基的结构可以相同,也可以不同.如红细胞内的血红蛋白(hemoglobin,Hb,图2-1-10)是由4个亚基聚合而成的,4个亚基两两相同,即含两个α亚基和两个β亚基.在一定条件下,这种蛋白质分子可以解聚成单个亚基,亚基在聚合或解聚时对某些蛋白质具有调节活性的作用.有的蛋白质虽由两条以上肽链构成,但几条肽链之间是通过共价键(如二硫键)连接的,这种结构不属于四级结构,如前面提到过的胰岛素就是1例. 二级结构:多肽链的某些部分氨基酸残基周期性的空间排列. 三级结构:在二级结构基础上进一步折叠成紧密的三维形式. 四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列.
2023-08-08 08:50:221

蛋白质分子结构可分为几级?维持各级结构的化学键是什么

蛋白质分子结构可分为四级。一级结构是指蛋白质中氨基酸排列顺序,是平面结构,维持一级结构的化学键是肽键和二硫键。二级结构是指蛋白质多肽主链有一定周期性的,有氢键维持的局部空间结构,如α螺旋、β折叠等,维持的化学键是氢键、盐键等非共价键、以及疏水作用和范德华力。三级结构是多肽链上包括主链和侧脸在内所用原子在三维空间内的分布,但只含有一条多肽链,维持的化学键也是氢键、盐键等非共价键、以及疏水作用和范德华力。四级结构是由两个或两个以上相互关联的具有三级结构的亚单位组成,维持的化学键也是氢键、盐键等非共价键、以及疏水作用和范德华力。
2023-08-08 08:50:331

蛋白质结构

蛋白质结构是指蛋白质分子的空间结构。蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子,所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。结构种类一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。
2023-08-08 08:50:551

蛋白质结构式

蛋白质结构通式文字表达:中间一个碳原子,连有一个氢,一个氨基,一个羧基还有一个R基。这个R基的不同就代表着不同的氨基酸,比如甘氨酸的R基是H,丙氨酸的R基是CH3-等肽键形成:由氨基脱去H,羧基脱去-OH而形成的酰胺键。当然中间要经过酶的催化,这一过程是在核糖体中完成的。资料扩展:蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。蛋白质的分子结构可划分为四级,以描述其不同的方面:一级结构:组成蛋白质多肽链的线性氨基酸序列。二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。
2023-08-08 08:51:271