- 余辉
-
300以内的质数如下所示:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
扩展资料:
质数分布规律:
1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)
S2区间73——216,有素数27个,孪生素数7对。
S3区间217——432,有素数36个,孪生素数8对。
S4区间433——720,有素数45个,孪生素数7对。
S5区间721——1080,有素数52个,孪生素数8对。
S6区间1081——1512,素数60个,孪生素数9对。
S7区间1513——2016,素数65个,孪生素数11对。
S8区间2017——2592,素数72个,孪生素数12对。
S9区间2593——3240,素数80个,孪生素数10对。
S10区间3241——3960,素数91个,孪生素数18对。
S11区间3961——4752素数92个,孪生素数17对。
S12区间4752——5616素数98个,孪生素数13对。
S13区间5617——6552素数108个,孪生素数14对。
S14区间6553——7560素数113个,孪生素数19对。
S15区间7561——8640素数116个,孪生素数14对。
素数分布规律的发现,许多素数问题可以解决。
参考资料:百度百科---质数
- 西柚不是西游
-
300以内的素数有:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
拓展资料:
质数(prime number)又称素数,有无限个。
质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。
多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。
- 九万里风9
-
300以内的质数:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
100以内的合数:
4.6.8.9.10.12.14.15.16.18.20.21.22.24.25.26.27.28.30.32.33.34.35.36.38.39.40.42.44.45.46.48.49.50.51.52.54.55.56.57.58.60.62.63.64.65.66.68.69.70.72.74.75.76.77.78. 80.81.82.84.85.86.87.88.90.91.92.93.94.95.96.98.99.100
- wpBeta
-
300以内的素数有:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
拓展资料:
质数(Prime number),又称素数,指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。大于1的自然数若不是素数,则称之为合数。
例如,5是个素数,因为其正约数只有1与5。而6则是个合数,因为除了1与6外,2与3也是其正约数。算术基本定理确立了素数于数论里的核心地位:任何大于1的整数均可被表示成一串唯一素数之乘积。为了确保该定理的唯一性,1被定义为不是素数,因为在因式分解中可以有任意多个1(如3、1×3、1×1×3等都是3的有效约数分解)。
古希腊数学家欧几里得于公元前300年前后证明有无限多个素数存在(欧几里得定理)。现时人们已发现多种验证素数的方法。
虽然人们仍未发现可以完全区别素数与合数的公式,但已建构了素数的分布模式(亦即素数在大数时的统计模式)。19世纪晚期得到证明的素数定理指出:一个任意自然数n为素数的概率反比于其数位(或n的对数)。
许多有关素数的问题依然未解,如哥德巴赫猜想(每个大于2的偶数可表示成两个素数之和)及孪生素数猜想(存在无穷多对相差2的素数)。这些问题促进了数论各个分支的发展,主要在于数字的解析或代数方面。素数被用于资讯科技里的几个程序中,如公钥加密利用了难以将大数分解成其素因数之类的性质。素数亦在其他数学领域里形成了各种广义化的素数概念,主要出现在代数里,如素元及素理想。
- FinCloud
-
300以内的质数如下所示:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
扩展资料
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。
合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。
- 阿啵呲嘚
-
300以内的质数如下所示:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293
扩展资料
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。
合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。
- 苏萦
-
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293
- 肖振
-
30000以内的质数表
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379
383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571
577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761
769 773 787 797 809 811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187
1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427
1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613
1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867
1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087
2089 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333
2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557
2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789
2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037
3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181
3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307
3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539
3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643
3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769
3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019
4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139
4153 4157 4159 4177 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261
4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397 4409
4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 4517 4519 4523
4547 4549 4561 4567 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657
4663 4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793
4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937
4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009 5011 5021 5023 5039
5051 5059 5077 5081 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171 5179
5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 5303 5309 5323
5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443
5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569
5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693
5701 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827
5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939
5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091
6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221
6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337
6343 6353 6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473
6481 6491 6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619
6637 6653 6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761
6763 6779 6781 6791 6793 6803 6823 6827 6829 6833 6841 6857 6863 6869 6871
6883 6899 6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 6997
7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109 7121 7127 7129 7151
7159 7177 7187 7193 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297
7307 7309 7321 7331 7333 7349 7351 7369 7393 7411 7417 7433 7451 7457 7459
7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561
7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 7673 7681 7687
7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823 7829
7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951
7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111
8117 8123 8147 8161 8167 8171 8179 8191 8209 8219 8221 8231 8233 8237 8243
8263 8269 8273 8287 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387
8389 8419 8423 8429 8431 8443 8447 8461 8467 8501 8513 8521 8527 8537 8539
8543 8563 8573 8581 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669 8677
8681 8689 8693 8699 8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783
8803 8807 8819 8821 8831 8837 8839 8849 8861 8863 8867 8887 8893 8923 8929
8933 8941 8951 8963 8969 8971 8999 9001 9007 9011 9013 9029 9041 9043 9049
9059 9067 9091 9103 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187 9199
9203 9209 9221 9227 9239 9241 9257 9277 9281 9283 9293 9311 9319 9323 9337
9341 9343 9349 9371 9377 9391 9397 9403 9413 9419 9421 9431 9433 9437 9439
9461 9463 9467 9473 9479 9491 9497 9511 9521 9533 9539 9547 9551 9587 9601
9613 9619 9623 9629 9631 9643 9649 9661 9677 9679 9689 9697 9719 9721 9733
9739 9743 9749 9767 9769 9781 9787 9791 9803 9811 9817 9829 9833 9839 9851
9857 9859 9871 9883 9887 9901 9907 9923 9929 9931 9941 9949 9967 9973 10007
10009 10037 10039 10061 10067 10069 10079 10091 10093 10099 10103 10111 10133 10139 10141
10151 10159 10163 10169 10177 10181 10193 10211 10223 10243 10247 10253 10259 10267 10271
10273 10289 10301 10303 10313 10321 10331 10333 10337 10343 10357 10369 10391 10399 10427
10429 10433 10453 10457 10459 10463 10477 10487 10499 10501 10513 10529 10531 10559 10567
10589 10597 10601 10607 10613 10627 10631 10639 10651 10657 10663 10667 10687 10691 10709
10711 10723 10729 10733 10739 10753 10771 10781 10789 10799 10831 10837 10847 10853 10859
10861 10867 10883 10889 10891 10903 10909 10937 10939 10949 10957 10973 10979 10987 10993
11003 11027 11047 11057 11059 11069 11071 11083 11087 11093 11113 11117 11119 11131 11149
11159 11161 11171 11173 11177 11197 11213 11239 11243 11251 11257 11261 11273 11279 11287
11299 11311 11317 11321 11329 11351 11353 11369 11383 11393 11399 11411 11423 11437 11443
11447 11467 11471 11483 11489 11491 11497 11503 11519 11527 11549 11551 11579 11587 11593
11597 11617 11621 11633 11657 11677 11681 11689 11699 11701 11717 11719 11731 11743 11777
11779 11783 11789 11801 11807 11813 11821 11827 11831 11833 11839 11863 11867 11887 11897
11903 11909 11923 11927 11933 11939 11941 11953 11959 11969 11971 11981 11987 12007 12011
12037 12041 12043 12049 12071 12073 12097 12101 12107 12109 12113 12119 12143 12149 12157
12161 12163 12197 12203 12211 12227 12239 12241 12251 12253 12263 12269 12277 12281 12289
12301 12323 12329 12343 12347 12373 12377 12379 12391 12401 12409 12413 12421 12433 12437
12451 12457 12473 12479 12487 12491 12497 12503 12511 12517 12527 12539 12541 12547 12553
12569 12577 12583 12589 12601 12611 12613 12619 12637 12641 12647 12653 12659 12671 12689
12697 12703 12713 12721 12739 12743 12757 12763 12781 12791 12799 12809 12821 12823 12829
12841 12853 12889 12893 12899 12907 12911 12917 12919 12923 12941 12953 12959 12967 12973
12979 12983 13001 13003 13007 13009 13033 13037 13043 13049 13063 13093 13099 13103 13109
13121 13127 13147 13151 13159 13163 13171 13177 13183 13187 13217 13219 13229 13241 13249
13259 13267 13291 13297 13309 13313 13327 13331 13337 13339 13367 13381 13397 13399 13411
13417 13421 13441 13451 13457 13463 13469 13477 13487 13499 13513 13523 13537 13553 13567
13577 13591 13597 13613 13619 13627 13633 13649 13669 13679 13681 13687 13691 13693 13697
13709 13711 13721 13723 13729 13751 13757 13759 13763 13781 13789 13799 13807 13829 13831
13841 13859 13873 13877 13879 13883 13901 13903 13907 13913 13921 13931 13933 13963 13967
13997 13999 14009 14011 14029 14033 14051 14057 14071 14081 14083 14087 14107 14143 14149
14153 14159 14173 14177 14197 14207 14221 14243 14249 14251 14281 14293 14303 14321 14323
14327 14341 14347 14369 14387 14389 14401 14407 14411 14419 14423 14431 14437 14447 14449
14461 14479 14489 14503 14519 14533 14537 14543 14549 14551 14557 14561 14563 14591 14593
14621 14627 14629 14633 14639 14653 14657 14669 14683 14699 14713 14717 14723 14731 14737
14741 14747 14753 14759 14767 14771 14779 14783 14797 14813 14821 14827 14831 14843 14851
14867 14869 14879 14887 14891 14897 14923 14929 14939 14947 14951 14957 14969 14983 15013
15017 15031 15053 15061 15073 15077 15083 15091 15101 15107 15121 15131 15137 15139 15149
15161 15173 15187 15193 15199 15217 15227 15233 15241 15259 15263 15269 15271 15277 15287
15289 15299 15307 15313 15319 15329 15331 15349 15359 15361 15373 15377 15383 15391 15401
15413 15427 15439 15443 15451 15461 15467 15473 15493 15497 15511 15527 15541 15551 15559
15569 15581 15583 15601 15607 15619 15629 15641 15643 15647 15649 15661 15667 15671 15679
15683 15727 15731 15733 15737 15739 15749 15761 15767 15773 15787 15791 15797 15803 15809
15817 15823 15859 15877 15881 15887 15889 15901 15907 15913 15919 15923 15937 15959 15971
15973 15991 16001 16007 16033 16057 16061 16063 16067 16069 16073 16087 16091 16097 16103
16111 16127 16139 16141 16183 16187 16189 16193 16217 16223 16229 16231 16249 16253 16267
16273 16301 16319 16333 16339 16349 16361 16363 16369 16381 16411 16417 16421 16427 16433
16447 16451 16453 16477 16481 16487 16493 16519 16529 16547 16553 16561 16567 16573 16603
16607 16619 16631 16633 16649 16651 16657 16661 16673 16691 16693 16699 16703 16729 16741
16747 16759 16763 16787 16811 16823 16829 16831 16843 16871 16879 16883 16889 16901 16903
16921 16927 16931 16937 16943 16963 16979 16981 16987 16993 17011 17021 17027 17029 17033
17041 17047 17053 17077 17093 17099 17107 17117 17123 17137 17159 17167 17183 17189 17191
17203 17207 17209 17231 17239 17257 17291 17293 17299 17317 17321 17327 17333 17341 17351
17359 17377 17383 17387 17389 17393 17401 17417 17419 17431 17443 17449 17467 17471 17477
17483 17489 17491 17497 17509 17519 17539 17551 17569 17573 17579 17581 17597 17599 17609
17623 17627 17657 17659 17669 17681 17683 17707 17713 17729 17737 17747 17749 17761 17783
17789 17791 17807 17827 17837 17839 17851 17863 17881 17891 17903 17909 17911 17921 17923
17929 17939 17957 17959 17971 17977 17981 17987 17989 18013 18041 18043 18047 18049 18059
18061 18077 18089 18097 18119 18121 18127 18131 18133 18143 18149 18169 18181 18191 18199
18211 18217 18223 18229 18233 18251 18253 18257 18269 18287 18289 18301 18307 18311 18313
18329 18341 18353 18367 18371 18379 18397 18401 18413 18427 18433 18439 18443 18451 18457
18461 18481 18493 18503 18517 18521 18523 18539 18541 18553 18583 18587 18593 18617 18637
18661 18671 18679 18691 18701 18713 18719 18731 18743 18749 18757 18773 18787 18793 18797
18803 18839 18859 18869 18899 18911 18913 18917 18919 18947 18959 18973 18979 19001 19009
19013 19031 19037 19051 19069 19073 19079 19081 19087 19121 19139 19141 19157 19163 19181
19183 19207 19211 19213 19219 19231 19237 19249 19259 19267 19273 19289 19301 19309 19319
19333 19373 19379 19381 19387 19391 19403 19417 19421 19423 19427 19429 19433 19441 19447
19457 19463 19469 19471 19477 19483 19489 19501 19507 19531 19541 19543 19553 19559 19571
19577 19583 19597 19603 19609 19661 19681 19687 19697 19699 19709 19717 19727 19739 19751
19753 19759 19763 19777 19793 19801 19813 19819 19841 19843 19853 19861 19867 19889 19891
19913 19919 19927 19937 19949 19961 19963 19973 19979 19991 19993 19997 20011 20021 20023
20029 20047 20051 20063 20071 20089 20101 20107 20113 20117 20123 20129 20143 20147 20149
20161 20173 20177 20183 20201 20219 20231 20233 20249 20261 20269 20287 20297 20323 20327
20333 20341 20347 20353 20357 20359 20369 20389 20393 20399 20407 20411 20431 20441 20443
20477 20479 20483 20507 20509 20521 20533 20543 20549 20551 20563 20593 20599 20611 20627
20639 20641 20663 20681 20693 20707 20717 20719 20731 20743 20747 20749 20753 20759 20771
20773 20789 20807 20809 20849 20857 20873 20879 20887 20897 20899 20903 20921 20929 20939
20947 20959 20963 20981 20983 21001 21011 21013 21017 21019 21023 21031 21059 21061 21067
21089 21101 21107 21121 21139 21143 21149 21157 21163 21169 21179 21187 21191 21193 21211
21221 21227 21247 21269 21277 21283 21313 21317 21319 21323 21341 21347 21377 21379 21383
- 再也不做站长了
-
2357111317192329313741434753596167717377838997……
- tt白
-
300以内的质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293100以内的合数:4.6.8.9.10.12.14.15.16.18.20.21.22.24.25.26.27.28.30.32.33.34.35.36.38.39.40.42.44.45.46.48.49.50.51.52.54.55.56.57.58.60.62.63.64.65.66.68.69.70.72.74.75.76.77.78. 80.81.82.84.85.86.87.88.90.91.92.93.94.95.96.98.99.100
质数的排布规律是怎样的?
1.随着数字的增大,质数分布越来越稀疏,比如从1到100有25个质数从1到1000有168个质数从1000到2000有135个质数从2000到3000有127个质数从3000到4000有120个质数从4000到5000有119个质数……2.有无穷多个质数3.如果用π(x)表示不大于x的质数的个数,例如π(100)=25,π(1000)=168,当x趋近于+∞时有有素数定理limx/(x/lgx)=1等等。2023-05-23 21:56:162
质数的规律是什么?
《素数快速筛法及公式》网上文章有答案2023-05-23 21:56:2611
质数有哪几类?
100以内的质数表,如图所示:质数又称素数。指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。扩展资料一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(1不是质数,也不是合数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。质数中除2是偶数外,其他都是奇数。质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。2023-05-23 21:56:531
1至21哪几个数是质数
2 3 5 7 11 13 17 192023-05-23 21:57:0910
质数的规律有哪些?
质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕2023-05-23 21:57:431
质数有什么规律?
《素数快速筛法及公式》网上文章有答案2023-05-23 21:58:096
质数共有多少个
质数是无穷的,因此质数的数量也是无穷的。虽然没有一个确定的公式可以计算出质数的数量,但是根据素数定理,小于或等于正整数x的质数的数量约为x/ln(x)。因此,随着x的增加,质数的数量呈指数增长。例如,小于100的质数共有25个,而小于1000的质数共有168个。但是,由于质数分布的不规则性,实际上找到大质数(超过100位的质数)的难度非常大。2023-05-23 21:58:232
急求:请问一下哪些是质数?
这些是:167 11 157 137 127 107 97 67 47 37 17 7 31 41 61 71 91 101 131 151 1612023-05-23 21:59:0312
质数到底是什么,为什么无数科学家为之着迷呢?
其实质数是一种特殊的整数,比如我们知道0、1、2、3等都是整数,但是这些整数有一些特点,比如4可以可以由2*2组成,8可以由4*2组成。所以虽然整数有很多,但是大部分整数都是可以由其它整数相乘来构成,所以这些能够直接用整数构成的整数就显得有点“多余”。于是人们就想把这些所谓“多余”的数先去掉,看看有哪些“最基本”的数2023-05-23 21:59:286
30以内质数表 三个概念
30以内的质数有:2、3、5、7、11、13、17、19、23、29。质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。质数的性质:1、质数的个数是无穷的。2、任何一个合数都可以分解为几个素数的积。3、欧拉利用黎曼函数证明了全部素数的倒数之和是发散的。扩展资料:质数的分布规律以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多,孪生质数也有相同的分布规律。以下8个区间内质数和孪生质数的统计数。S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)S2区间73——216,有素数27个,孪生素数7对。S3区间217——432,有素数36个,孪生素数8对。S4区间433——720,有素数45个,孪生素数7对。S5区间721——1080,有素数52个,孪生素数8对。S6区间1081——1512,素数60个,孪生素数9对。S7区间1513——2016,素数65个,孪生素数11对。S8区间2017——2592,素数72个,孪生素数12对。素数分布规律的发现,许多素数问题可以解决。参考资料来源:百度百科-质数2023-05-23 22:00:241
什么叫质数?
质数又叫素数,指的是在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。反之,则被称为合数。1和0既非素数,也非合数。质数有无穷个,主要有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71等。质数是什么质数的性质:1、质数p的约数只有两个,分别是1和p。2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。3、质数的个数是无限的。4、质数的个数公式π(n)是不减函数。5、若n为正整数,在n^2到(n+1)^2之间至少有一个质数。6、若n为大于或等于2的正整数,在n到n!之间至少有一个质数。7、若质数p为不超过n(n≥4)的最大质数,则p>n/2。8、所有大于10的质数中,个位数只有1、3、7、9。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。除此之外,还比较常见的质数有73、79、83、89、97、101、103、107、109、113、127、131、137、139、149、151、157、163、167等。2023-05-23 22:00:401
世界上已知最大的质数?
最小质数是22023-05-23 22:00:473
质数有规律吗?
:质数是指除了1和它本身以外,不能被其他数整除的自然数。质数的规律主要有以下几点: 1. 奇偶规律:所有的偶数除以2都是偶数,都不是质数。所有大于2的质数都是奇数。 2. 合数规律:任何一个大于1的数,如果不是质数,则一定可以分解成若干个质因数的乘积,即这个数一定是合数。3. 质数密度规律:质数密度逐渐减小,随着数字的增大,质数的比例也会越来越小。 4. 几何规律:任何大于3的质数都可以表示成6k+1或6k-1的形式,其中k是一个正整数。 5. 费马小定理:如果p是一个质数,a和p互质,那么a^(p-1) ≡ 1 (mod p)。 6. 欧拉定理:若n是一个大于1的整数,则φ(n)(也就是n和它的正约数之间的相对质数数量)等于n乘以所有它的质因数的(1-1/质因数)的乘积。2023-05-23 22:00:532
质数表的猜想
(1)黎曼猜想。 黎曼通过研究发现, 素数分布的绝大部分猜想都取决于黎曼zeta函数ζ(s)的零点位置。他猜测那些非平凡零点都落在复平面中实部为1/2的直线上, 这就是被誉为千禧年世界七大数学难题之一的黎曼猜想, 是解析数论的重要课题。(2)孪生素数猜想。 如果p和p+2都是素数, 那么就称他们为孪生素数。一个重要的问题就是:是否存在无限多对孪生素数?美国华人张益唐对这个问题的解决迈出了重要一步,他证明了有无穷多对差小于七千万的素数。之后大家不断改进他的证明,现在这个七千万已经缩小到246.(3)哥德巴赫猜想(Goldbach Conjecture)(a)所有的不小于6的偶数,都可以表示为两个奇素数之和 (一般用代号“1+1”表示)。(b)每个不小于9的奇数都可以表示为三个奇素数之和。质数表记忆口诀方法一:儿歌记忆法(二、三、五、七 和 十一) (十三后面是十七) (十九、二三、二十九) (三一、三七、四十一) (四三、四七、五十三) (五九、六一、六十七) (七一、七三、七十九) (八三、八九、九十七)方法二:口诀记忆法二,三,五,七,一十一; 一三,一九,一十七; 二三,二九,三十七; 三一,四一,四十七; 四三,五三,五十九; 六一,七一,六十七; 七三,八三,八十九; 再加七九,九十七; 25个质数不能少; 百以内质数心中记。2023-05-23 22:01:121
十以内的质数有哪些?
10以内的质数有2、3、5、7。首先2是最小的质数,也是唯一一个偶质数,其它偶数都是合数。质数的定义一个大于1的自然数,只能被1和它本身整除,那么这个数就是质数,否则就是合数。显然1既不是质数也不是合数。其原因是:任何一个数的质因数分解是唯一的。质数的定义:质数又称素数,指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数1和自己的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。孪生质数也有相同的分布规律。质数的个数是无限的,质数的个数公式。2023-05-23 22:01:241
质数的规律
质数的规律 就是 还没被发现的那个规律。2023-05-23 22:01:384
想知道209是质数吗?
想知道209不是质数。209等于11x19,所以209是合数除零外能被2、3、5、7、11、13、17、23、29、31、37等整除就是他们的倍数的自然数为合数,否则为质数,209是质数。分解质因数就是把一个合数分解成质数乘积的形式。比如6是合数,可以分解成2*3,2和3都是质数。 209可以分解成11*19。质数概括质数又称素数。指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数1和自己的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N,N+1为单位,随着N的增大,素数的个数以波浪形式渐渐增多。2023-05-23 22:01:451
10以内所有质数的和是
10以内所有质数的和是介绍如下:10以内所有素数的和是17。 即2+3+5+7=17。质数又称素数。指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。扩展资料素数的重要性质:1、素数无限定理,用反证法容易证明,素数有无穷多个。关于这一点,欧几里得的《几何原本》中已有记载。2、贝特朗定理,对任一实数x≥1,在x及2x之间必有一素数。这一假设是由贝特朗提出的,并于1848年被切比雪夫所证明。3、素数定理,从不大于n的自然数随机选一个,它是素数的概率大约是1/lnn。因此,素数的分布越往上越稀疏。这一点也可以从D.B.扎盖尔编制的素数表中得到验证。4、存在任意长度的素数等差数列,这一结论由格林和陶哲轩于2004年证明。孪生素数就是指相差2的素数对,例如3和5,5和7,11和13…。这个猜想由希尔伯特在1900年国际数学家大会的报告上第8个问题中正式提出,可以这样描述:存在无穷多个素数p,使得p+2是素数。2023-05-23 22:01:581
100以内的质数表
基本上小学的同学们看到这个表就倒吸一口凉气,会直接选择放弃。别害怕,小同学,如果你小学阶段的目标只是 AMC 8 这样的数学竞赛得奖,你只要熟记 100 以内的25个质数,并且知道 2 是所有质数中唯一的偶数即可。AMC 8 考试,要求 40 分钟做完 25 道题,很多孩子考前刷题经常会出现:如果不限时25道题琢磨一个多小时都能做出来,一旦限时40分钟做完,可能很多就会卡在 20 道以内的情况。这就涉及到时间分配问题了。我们来看两道非常基础的质数性质送分题:2014年AMC8 Problem 4:浣熊数学AMC 8 Primes and Factors 课后作业:如果孩子充分理解质数的性质,并熟练记忆 100 以内的25个质数,这两道题都是送分题,甚至可能是秒做出来正确答案,做这些基础题花费时间越少,分配给后面的难度较大的题目时间就会越多,那么孩子得奖的把握就会越大。说到这里,很多家长会觉得,道理都懂了,那么,该怎么帮孩子背下来呢?很简单,先理解再记忆。直接忽略质数的理解过程拿着质数表硬背,很容易出现漏背以及错背的情况。实际操作如下:让孩子拿出纸笔,在本子上从1写到100,每行写10个数,先划掉1,再依次划掉2、3、5、7的倍数(2、3、5、7除外)剩下的数就是100以内的质数。让孩子多画几次质数表,再来背自己画的质数表,记忆就会非常深刻了。嘿嘿,最后有个小彩蛋,推荐一款可以训练质数敏感度的小游戏,2023-05-23 22:02:5114
质数都有多少?
50以内的质数有:2 、3、 5 、7 、11 、13 、17 、19 、23、 29、31 、37、 41、 43、 47。质数的定义:只有两个正因数(1和自己)的自然数即为质数。质数的分布规律:是36N(N+1)为单位。以上内容参考:百度百科-质数表2023-05-23 22:03:241
什么是质数?是怎么划分的?
什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。还可以说成质数有两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。2023-05-23 22:03:311
质数规律是什么?
质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕2023-05-23 22:03:421
1至21哪几个数是质数
1-21的自然数范围内,质数从小到大依次有:2,3,5,7,11,13,17,192023-05-23 22:03:503
300以内的素数(质数)有哪些?
300以内的质数如下所示:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 扩展资料:质数分布规律:1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)S2区间73——216,有素数27个,孪生素数7对。S3区间217——432,有素数36个,孪生素数8对。S4区间433——720,有素数45个,孪生素数7对。S5区间721——1080,有素数52个,孪生素数8对。S6区间1081——1512,素数60个,孪生素数9对。S7区间1513——2016,素数65个,孪生素数11对。S8区间2017——2592,素数72个,孪生素数12对。S9区间2593——3240,素数80个,孪生素数10对。S10区间3241——3960,素数91个,孪生素数18对。S11区间3961——4752素数92个,孪生素数17对。S12区间4752——5616素数98个,孪生素数13对。S13区间5617——6552素数108个,孪生素数14对。S14区间6553——7560素数113个,孪生素数19对。S15区间7561——8640素数116个,孪生素数14对。素数分布规律的发现,许多素数问题可以解决。参考资料:百度百科---质数2023-05-23 22:03:571
关于质数
确实没发现什么规律,不过任何一个正整数,都可表示为一个素数和一个合数相加得到2023-05-23 22:04:284
十以内的质数有几个?
十以内的质数:2 3 5 7什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。还可以说成质数有两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。2023-05-23 22:04:422
质数表有几个
质数表:分布规律以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)S2区间73——216,有素数27个,孪生素数7对。S3区间217——432,有素数36个,孪生素数8对。以上内容参考:百度百科-质数2023-05-23 22:04:491
我想知道质数的定义,谢谢大家.
所谓质数或称素数,就是一个正整数,除了本身和1以外并没有任何其他因子。例如2,3,5,7是质数,而4,6,8,9则不是,后者称为合成数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字1不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。2023-05-23 22:05:074
为什么数学家无法找到质数的规律?
质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕2023-05-23 22:05:141
1、2、3、5、7、11、13、17、19、23、29、31、41、43、47。
十以内的质数:2 3 5 7什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。还可以说成质数有两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。2023-05-23 22:05:581
质数口诀表轻松背
质数口诀表如下:二,三,五,七,一十一;一三,一九,一十七;二三,二九,三十七;三一,四一,四十七;四三,五三,五十九;六一,七一,六十七;七三,八三,八十九;再加七九,九十七;25个质数不能少;百以内质数心中记。一位质数偶打头,2、3、5、7要记熟; ( 2、3、5、7)。两位质数不用愁,可以编成顺口溜。十位若是4和1,个位准有1、3、7; ( 41、43、47、11、13、17)。十位若是2、5、8,个位3、9往上加; ( 23、29、53、59、83、89)。十位若是3和6,个位1、7跟在后; (31、37、61、67)。十位若是被7占,个位准是1、9、3; (71、79、73)。19、97最后算。 (19、97)。质数的定义:只有两个正因数(1和它本身)的自然数即为质数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。孪生质数也有相同的分布规律。2023-05-23 22:06:051
什么是质数?怎么判断一个数是不是质数?
质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕2023-05-23 22:06:281
259是不是质数
259不是质数。7x37=2592023-05-23 22:06:342
质数有多少???
因为自然数有无限个,所以质数也是有无限个。2023-05-23 22:06:412
质数是多少?怎么背啊?
质数口诀表如下:二,三,五,七,一十一;一三,一九,一十七;二三,二九,三十七;三一,四一,四十七;四三,五三,五十九;六一,七一,六十七;七三,八三,八十九;再加七九,九十七;25个质数不能少;百以内质数心中记。一位质数偶打头,2、3、5、7要记熟; ( 2、3、5、7)。两位质数不用愁,可以编成顺口溜。十位若是4和1,个位准有1、3、7; ( 41、43、47、11、13、17)。十位若是2、5、8,个位3、9往上加; ( 23、29、53、59、83、89)。十位若是3和6,个位1、7跟在后; (31、37、61、67)。十位若是被7占,个位准是1、9、3; (71、79、73)。19、97最后算。 (19、97)。质数的定义:只有两个正因数(1和它本身)的自然数即为质数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。孪生质数也有相同的分布规律。2023-05-23 22:06:471
有没有连续的一万个质数,有请写出过程
想想就知道,没有,除非有连续10000个单数。2023-05-23 22:07:015
质数和合数的规律
质数的分布是没有规律的,往往让人莫明其妙.如:101、401、601、701都是质数,但上下面的301和901却是合数. 合数,除了能被1和自己整除,还能被其他数整除..也没有什么明显的规律.2023-05-23 22:07:151
关于质数的知识 急
质数的概念 所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子.例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数.从这个观点可将整数分为两种,一种叫质数,一种叫合成数.(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数.可以写成一串质数相乘的积. 质数的奥秘 质数的分布是没有规律的,往往让人莫名其妙.如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数. 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数.这个式子一直到n=39时,都是成立的.但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41. 质数的性质 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质.他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数.但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641*6700417,并非质数,而是合数. 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数.目前由于平方开得较大,因而能够证明的也很少.现在数学家们取得Fn的最大值为:n=1495.这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数.质数和费尔马开了个大玩笑! 质数的假设 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数.他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数.p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数. 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证.梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数.这是第九个梅森数.20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数.质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难. 质数表上的质数 现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1.数学虽然可以找到很大的质数,但质数的规律还是无法循通. 如果您满意我的回答, 手机提问的朋友在客户端右上角评价点【满意】即可!2023-05-23 22:07:211
1至20自然数中质数有几个合数有几个?
质数有2、3、5、7、11、13、17、19共8个。合数有4、6、8、9、10、12、14、15、16、18、20共11个。2023-05-23 22:07:515
质数是否有负质数
分类: 教育/科学 解析: 质数没有负的 所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子.例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数.从这个观点可将整数分为两种,一种叫质数,一种叫合成数.(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数.可以写成一串质数相乘的积. (例1) ,, , , , ,这就是说,任何数都由质数构成的. (例2) 2=(1×2),3,5,7,11…均为质数.而4,6,8不为质数.(因为最少还有因数2)由於质数本身的奇异性使人无法一把抓住它出现的规律,抓住它出现的特性甚至不知道它实际分布的情形.简单来说,给你一个正整数,你竟不可知道它是否是一个质数,即使你用尽了方法,证明它不可能是一个质数,但竟无法分解它,举例来说:211-1=2047 可以分解成 .267-1 呢 据说美国代数学家 Frank Neloon Cole花了三年多才发现的.自然那时「电脑时代」还未来临,只能靠无限的耐心与毅力,再加上一副长於计算数目的训练才弄得出来.但有了电脑似乎好不了多少,数目字加大了,困难依旧.1931年 D.H. Lehmar 证明了 2257-1 是一个大合成数.大!不错.它等於 231,584,178,474,632,390,847,141,970,017,375,815,706, 539,969,331,281,128,078,915,168,015,826,259,279,871 一个78位数字的大数,到目前仍未有人或电脑能分解它! 因此,虽然知道一个数目是否质数也许没有多大用处,但仍是很有趣味,最少在找它的过程中会引起很多方法论的问题. 质数的特性 1质数除了2之外,必为奇数.(换句话说,2是最小的质数,也是唯一的偶数) 2「1」不算是质数. 3「算术基本定理」:比1大的任何整数,必可分解为质因数的乘积,且表示的方法是唯一的. 质数的个数与求法 1欧几里德证明了「质数必有无限个」 2「Eratosthenes」滤套 若要求从2到n的质数,只要检查n是否可被不大於的质数整除即可.要判断313是否为质数,则只要检查313是不是可以被小於或等於17的质数整除即可. 3质数有没有一种特殊的型式呢 Mersenne质数:型如,若为质数时称之(但质数不一定型如, 例如就非质数.)目前已知有3, 7, 31, 127,等38个,还在寻找中… 费玛质数:型如,当n=0到4时.(但质数不一定型如,例 如n=5时,非质数.) 【注】型如称为「费玛数」,而费玛质数只有3 , 5, 17 , 257 , 65537等五个. 4可不可以用一个公式,表示出所有的质数呢 (1)欧拉::在x=0,1,2…40时,可得41个质数 (1)勒真德::在x=0,1,2…28时,可得29个质数 :在x=0,1,2…79时,可得80个质数 :在x=1,2…11000时,可得11000个质数 ●但是,没有一个多项式可表示出所有的质数 为什麼要找质数 「既然质数有无限多个,那麼为什麼数学家要投入那麼多的心力一直寻找更大的质数呢 」 简单的说,数学家就和一般人一样,「你有收藏东西的兴趣习惯吗 」「喜欢在比赛中得到名次吗 」这个都是理由之一.回答这个问题,可以用几个方向来说明, 一,这是传统! 在西元前300年的欧几里德已经开始这个追求!他在「几何原本」中提及完全数的概念,其中和麦司尼质数产生了关联,开启了研究之门,之后大数学家如费玛,欧拉,麦司尼,笛卡尔…相继投入这个追寻的工作中.也就在寻找大的质数的过程中,对基本数论有很大的助益,因此这个寻找的传统值得被继续~ 二,它的附加价值! 因为美国的政治上的目的,才有把人送上月球的创举,但是追寻大的质数例如像麦司尼质数,对社会影响的却是持续不断的,它的副加价值在於不断促进科技的进步与人们的日常生活有用的东西材质的研发,也改进教育建设让生活更有生产力.在寻找并纪录麦司尼质数的过程中,让老师可以带领学生投入研究,这让学生将研究的精神用於工作上,让工程或科学的得以进步,当然这只是副加价的一部份而已. 三,人们喜欢美丽且稀少的物品! 如前文提及欧几里德已经开始这个追求后,它是如此稀少(目前已知有30多个,还在寻找中),不仅如此它也是美丽的;数学上什麼叫作「美丽」 例如人们希望证明是简短,明了,而且可以绐合旧知识让你了解新的东西!而麦司尼质数的型式与证明都合符合上述的要求. 四,无上荣耀! 运动选手为什麼不断追不更高,更快,更远呢 难道是希望他们在工作上可以使用这些技巧吗 不是吧,它们都是渴望竞争,为了荣耀(to win)!险峻的峭壁和高山峻岭对於喜欢攀岩,登山的人,有无法抗拒的魅力,数学的探索也是如此,看著无法想像巨大的数字竟是质数时那种心情是相同的,因此继续寻找下一个的渴望,岂是语言可以形容 人们当然需要务实,但是也需要好奇心和不断尝试的精神,才能而不断进步. 五,对电脑的考验! 当电脑的发明之后,人们可以藉由电脑的计算去找麦司尼质数,因为检验一个已知的质数都要经过十亿次以上的计算才会计算出来(以电脑来算当然很快),这时候就是测验电脑稳不稳定的好时机,Intel的Pentium处理器,就被Thomas Nicely在计算in prime constant时,找到有bug存在. 六,了解质数分布的情形! 虽然数学不是实验的科学,但是在我们会用例子去检验我们的猜测,当例子愈来愈多时,我们也会更了解事实,而质数的分布情形这是如此,例如高斯在看过质数表之后猜测了质数定理(prime number theorem),这个定理在1896由哈达玛(Hadamard)及普辛(Pouusin)分别证得: 质数是自然数的一部份,有趣的是,它却与自然数的个数一样多,也有无穷多个.两千多年前,古希腊数学家就从理论上证明了这一点.不过,质数看上去要比自然数少的多.有人统计过,在1到1000之间,有168个质数;在1000到2000之间,有135个质数;在2000到3000之间,有127个质数;而在3000到4000之间,就只有120个质数了,越往后,质数就会越稀少.那麼,怎样从自然数里把质数给找出来呢 公元前三世纪,古希腊数学家埃拉托塞尼(Eratosthenes)发明了一种很有趣的方法.埃拉托塞尼常把数表写在涂了白腊的木板上,遇到需要划去的数,就在那个数的位置刺一个孔;随著合数逐一被划掉,木板上变得千疮百孔,像是一个神奇的筛子,筛掉了合数,留下了质数.所以,人们将这种求质数的方法叫做"埃拉托塞尼筛法". 1. 我们把1~100的自然数,按照顺序列成一张百数表.(如下表) 2. 首先把1划掉,因为1既不是质数,也不是合数. 3. 接下来一个数是2,它是最小的质数,应予保留.但2的倍数一定不是质数,应该全部划掉;也就是从2起,每隔1个数就划掉1个数. 4. 在剩下的数中,3是第一个未被划掉的数,它是个质数,应予保留.但3的倍数一定不是质数,应该全部划掉;也就是从3起,每隔2个数就划掉1个数. 5. 在剩下的数中,4已被划掉了,其余的数,5成为第一个未被划掉的数,它是质数,也应予以保留.但5的倍数一定不是质数,应该全部划掉;也就是从5起,每隔4个数就划掉1个数. 6.仿照步骤1~5,继续划下去,数表上最后剩下的就是1~100之间的质数了. 埃拉托塞尼筛法 这种方法是世界上最古老的一种求质数的方法,它的原理很简单,运用起来也很方便.现在,凭著经过改进后的埃拉托塞尼筛法,数学家们已把10亿以内的质数全都筛出来了.怎样找质数呢 这个问题据说自希腊及中国周朝已有人在问这个难题了.下面是一些初步查询. 质数是无穷.这很早就证明了.因若 p1=2, p2=3, pn 是最初 n 个质数,则新数目 必由一个不等於 p1, p2, , pn 中任一个质数的新质数所除尽,故而 pn+1 存在了;且 举例说, 但 30031=59 x 509 证明了 ,不必是质数. 考虑 f(n) 形式中是否有无限个质数存在或 f(p) 中是否有无限合成数存在呢 怎样证明 n 是一个质数呢 传统的「筛法」是将任一个数n的可能因子查证,简化后;只要过滤所有小於的质数即可以了.就是n若是合成数,必有一个小於的质因数.如 3,5,7,11,13,等等.目前零碎地查质数的方法固然有,但仍无一万全之方. 费马的猜测 17世纪时,有个法国律师叫费马(Fermat,1601-1665),他非常喜欢数学,常常利用业余时间研究高深的数学问题,结果取得了很大的成就,被人称之为"业余数学家之王".费马研究数学时,不喜欢搞证明,喜欢提问题;他凭藉丰富的想像力和深刻的洞察力,提出一系列重要的数学猜想,深刻地影响了数学的发展,他提出的"费马最后定理",几百年来吸引了无数的数学家,直到1994年才由美国普林斯顿大学的怀尔斯得出证明. 他在西元1640年提出了一个公式:『 2+1』,他验算了n等於1到4的情况,发现都是质数以后(如下表),就直接猜测只要n是自然数,这个公式求出来的一定是质数.」 n 2+1 1 2+1=5(质数) 2 2+1=17(质数) 3 2+1=257(质数) 4 2+1=65537(质数) 1. 费马最喜欢的数学分支是数论,他曾深入研究过质数的性质,他发现了一个有趣的现象.计算 = 它是一个质数吗 . 2. 那 又是多少呢 它是一个质数吗 . 3. 再下去, 是多少呢 它是一个质数吗 . 4. 最后, 是多少呢 它是一个质数吗 解答: =5;它是质数. =17;它是质数. =257;它是质数. =65537;它是质数. 费马当年并没有继续算下去,他猜测说:只要n是自然数,由这个公式 得出的数一定都是质数;这是一个很有名的猜想,由於n=5之后演算起来很麻烦,很少有人去验证它. 1732年,大数学家欧拉认真研究了这个问题,它发现费马只要再往下演算一个自然数,就会发现由这个公式得出的数不全是质数. n=5时,==***********,***********可以分解为641×6700417,它不是质数.也就是说,费马的这个猜想不能成为一个求质数的公式.实际上几千年来,数学家们一直在寻找这样的一个公式,一个能求出所有质数的公式;但直到现在,谁也未能找到这样一个公式,而且谁也未能找到证据,说这样的公式就一定不存在;这样的公式存不存在,也就成了一个著名的数学难题. 费马在数学史上,是一位非常重要的人物,虽然费马的公式是错误的,但是数学家从另一个方向来寻找大质数,也就是之前讲完全数时提到的:『如果2-1是一个质数,那麼N=2(2-1)一定是个完全数.』於是,数学家们努力验算不同的 n值,也找出了一些质数,但是由於数字太大,当时又没有电脑的帮忙,所以很多结果都是错的.到了十七世纪,一位法国的天主教修士梅森尼提出了:在 n不大於257的情况下,共有十一个质数.虽然他的结果同样有不少错误,但是后人就把『2-1』这种形式的质数叫做『梅森尼质数』.」 费马定理 费马一心想要找出一个求质数的公式,结果未能成功.人们发现,倒是他无意提出的另一个猜想,对寻找质数很有用处. 费马猜测说;如果 是一个质数,那麼,对任何自然数n,( )一定能被 整除.这一回费马猜对了,这个猜想被人称作费马小定理.例如:11是质数,2是自然数,所以( )一定能被11整除. 利用费马定理,这是目前最有效的鉴定质数的方法.要判断一个数n是不是质数,首先看它能不能整除( ),如果不能整除,它一定是合数;如果能整除,它就"极可能"是质数.现在,在电子计算机上运用这种新方法,要鉴定一个上百位的数是不是质数,一般只要15秒钟就够了. 质数公式表 f(x)公式 在100以下令f(x)成合成数的x值 总数 x2-79+1601 80, 81, 84, 89, 96 5 x2+x+41 40,41,44,49, 56, 65, 76,81,82,84,87,89,91,96 14 2x2+29 29, 30, 32, 35, 39,44, 50, 57, 58, 61,63, 65, 25 72,74,76, 84,87, 88, 89,91,92,94,95, 97, 99 6x2+6x+31 29, 30, 31, 34, 36,41,44, 51, 55, 59, 61, 62, 25 64,66, 69,76,80, 84, 86. 87, 88, 92, 93, 97, 99 3x2+3x+23 22,23,27, 30, 38,43, 44,45,46,49, 51, 55, 56, 59, 28 62,66,68, 69,70,78, 85, 87, 88, 89, 91,92,95,96 像质数公式 x2+x+41,我们能找到连续 40 个(由 0 到 39)的质数,有没有一条质数公式 f=x2+x+b,能使 (b-1) 个连续 x 值使 f(x) 都是质数呢 有人曾用电算机去找,结果查出如果有,则 b 值一定要超过 1,250,000,000,而且最多只有一个.看来这个问题大概解不了. 现在的数学家们在质数这个领域里,有两个重要的研究方向:一个是利用各种更有效率的筛法,不断地往更大的数里面去搜寻质数;另外就是寻找新的『梅森尼质数』.到西元1996年为止,数学家已经藉由电脑运算,知道1020以内有多少质数了;另一方面,在西元1999年六月,数学家也发现了第三十八个『梅森尼质数』: ***********-1,这同时也是到目前为止发现的最大质数!它是一个2098960位数. - - 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 12023-05-23 22:08:161
质数是怎么回事?
什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。还可以说成质数有两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。2023-05-23 22:08:221
质数是什么样子的?
什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。还可以说成质数有两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。2023-05-23 22:08:281
数学中的“质数”是什么意思?
质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕2023-05-23 22:08:351
什么叫质数
实数包括有理数和无理数有理数包括整数和非整数整数包括自然数和负整数自然数根据奇偶性可分为奇数和偶数,根据约数的多少可分为质数(素数)、合数和非质数合数(即0、1)如果(a、b、c为不为0的整数),a/b=c,a就叫做b、c的倍数,b、c就是a的两个约数。质数(素数):只有1和它本身两个约数的数合数:除了1和它本身两个约数外,还有其他约数的数。2023-05-23 22:08:436
小学五年级数学什么是质数
你好一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。满意请采纳2023-05-23 22:09:274
两个数的最大公因数是1,这两个数一定是质数
两个数的最大公因数是1,那么这两个数一定都是质数。(错误)例如:8和9的最大公因数是1,但8和9都不是质数。正确答案应该是互质数。质数又叫素数,指的是在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。反之,则被称为合数。1和0既非素数,也非合数。质数有无穷个,主要有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71等。质数的性质:1、质数p的约数只有两个,分别是1和p。2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。3、质数的个数是无限的。4、质数的个数公式π(n)是不减函数。5、若n为正整数,在n^2到(n+1)^2之间至少有一个质数。6、若n为大于或等于2的正整数,在n到n!之间至少有一个质数。7、若质数p为不超过n(n≥4)的最大质数,则p>n/2。8、所有大于10的质数中,个位数只有1、3、7、9。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。除此之外,还比较常见的质数有73、79、83、89、97、101、103、107、109、113、127、131、137、139、149、151、157、163、167等。2023-05-23 22:09:341
质数的性质
1*X=X2023-05-23 22:09:565
什么是质数?要详细的概念.
什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 还有一种质数叫费马数。形式是:Fn=2^(2^n)+1 是质数的猜想。如F1=2^(2^1)+1=5 F2=2^(2^2)+1=17 F3=2^(2^3)+1=257 F4=2^(2^4)+1=65537F5=2^(2^5)+1=4294967297前4个是质数,因为第5个数实在太大了,费马认为是实数,并提出(费马没给出证明)后来欧拉算出F5=641*6700417.目前只有n=0,1,2,3,4,Fn才是质数.2023-05-23 22:10:111
不明白什么是质数?
大于1的自然数,只能被1或自身整除2023-05-23 22:10:215
求个质数的公式
知道点,就能求曲线。2023-05-23 22:10:482