汉邦问答 / 问答 / 问答详情

无理数e是怎么来的?

2023-08-04 11:14:45
TAG: 无理数
bikbok

e

e的发现始於微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.

计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.

若将指数函数 ex 作泰勒展开,则得

以 x=1 代入上式得

此级数收敛迅速,e 近似到小数点后 40 位的数值是

将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由

透过这个级数的计算,可得

由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,

另方面,

所以,

我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.

甲)差分.

考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为

以后我们乾脆就把 简记为

(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...

注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.

差分算子的性质

(i) [合称线性]

(ii) (常数) [差分方程根本定理]

(iii)

其中 ,而 (n(k) 叫做排列数列.

(iv) 叫做自然等比数列.

(iv)" 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1)

(乙).和分

给一个数列 (un).和分的问题就是要算和 . 怎麼算呢 我们有下面重要的结果:

定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则

和分也具有线性的性质:

甲)微分

给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f"(x0) 或 Df(x),亦即

若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子.

微分算子的性质:

(i) [合称线性]

(ii) (常数) [差分方程根本定理]

(iii) Dxn=nxn-1

(iv) Dex=ex

(iv)" 一般的指数数列 ax 之导函数为

(乙)积分.

设 f 为定义在 [a,b] 上的函数,积分的问题就是要算图甲阴影的面积.我们的办法是对 [a,b] 作分割:

;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 (见图乙);最后再取极限 (让每一小段的长度都趋近於 0).

若这个极限值存在,我们就记为 的几何意义就是图甲阴影的面积.

(事实上,连续性也「差不多」是积分存在的必要条件.)

图甲

图乙

积分算子也具有线性的性质:

定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.)

定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g"=f,则

注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!

上面定理1及定理3基本上都表述著差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.

我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g"=f (这是差分及微分的问题),那麼对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.

甲)Taylor展开公式

这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,於是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那麼我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清

两个问题:即如何选取简单函数及逼近的尺度.

(一) 对於连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是

此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.

g 在 x0 点附近跟 f 很靠近,於是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等於 f 自身.

值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0+f"(x0)(x-x0)) 的图形正好是一条通过点 (x0,f(x0)) 而且切於 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.

利用 Talor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.

复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这麼简单.

当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.)

注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.

(二) 对於离散的情形,Taylor 展开就是:

给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:

答案是 此式就是离散情形的 Maclaurin 公式.

乙)分部积分公式与Abel分部和分公式的类推

(一) 分部积分公式:

设 u(x),v(x) 在 [a,b] 上连续,则

(二) Abel分部和分公式:

设(un),(v)为两个数列,令 sn=u1+......+un,则

上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.

(丁)复利与连续复利 (这也分别是离散与连续之间的类推)

(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)

根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.

(二) 若考虑每年复利 m 次,则 t 年后的本利和应为

令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert

换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y"=ry 的解答.

由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对於常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.

(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)

(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有

(二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则

当然,变数再多几个也都一样.

(己)Lebesgue 积分的概念

(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.

(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积.(见下图)

Lebesgue 的想法是对 f 的影域 作分割:

函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 於是 [a,b] 就相应分割成 ,取样本点 ,作近似和

让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.

墨然殇

旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……

螺线特别是对数螺线的美学意义可以用指数的形式来表达:

φkρ=αe

其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。

数,美吗?

1、数之美

人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。

毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。”)。

这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。

中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。

2、黄金律之美

黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。

现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。

然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线:

φkρ=αe

的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618……

因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。

黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。

3、“自然律”之美

“自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:

1(1+——)

X的X次方,当X趋近无穷时的极限。

人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究

1(1+——)

X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。

现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。

生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。

“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。

如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。

e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。

英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?

我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。

古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。

有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!

有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。

“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)

无尘剑

1+1+1/2!+1/3!+...+1/n!

n趋于无穷等于e

余辉

e=lim[n->无穷](1+1/n)^n,〔〕里是写在lim下面的.

苏萦

lim (1+n)^(1/n), n->0

FinCloud

第一个人还真罗嗦啊

什么是对数螺线?是谁发明的?

分类: 教育/科学 >> 科学技术 解析: 对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。
2023-08-04 00:57:291

对数螺线是什么

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极.据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中.  螺线特别是对数螺线的美学意义可以用指数的形式来表达:  ρ=αe^(kφ)   其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数.  对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.
2023-08-04 00:57:361

对数螺线方程如何解

填空:对数螺线ρ=e^θ在点处切线的直角坐标方程为________。x+y=e^(π/2).详解一,对数螺线方程ρ=e^θ在点θ=π/2处的切线直角坐标系方程见附图;详解二:对数螺线方程ρ=e^θ可化为隐函数方程:ln√[x^2+y^2]=arctan(y/x),利用隐函数求导法,求得在点[0,e^(π/2)]处的导数为y"(0)=-1,故所求在点(ρ,θ)处的切线方程是:y-e^(π/2)=-1(x-0)=-x,即x+y=e^(π/2).
2023-08-04 00:57:451

对数螺线Θ属于 -π到π时是指图形中的哪一部分呀

如图。
2023-08-04 00:57:521

对数螺线怎么转换成参数方程

对数螺线的参数方程为:x=e^θcosθ。y=e^θsinθ。等角螺线,指的是臂的距离以几何级数递增的螺线。设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等(故其名),而此值为 arccot(b)。简介等角螺线是由笛卡儿在1638年发现的。雅各布.伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词纵使改变,依然故我(eadem mutata resurgo)。可惜雕刻师误将阿基米德螺线刻了上去。
2023-08-04 00:58:121

对数螺线的寓意

慢慢靠近始终无法达到。对数螺线是一根无止尽的螺线,永远向着极绕,越绕越靠近极,但又永远不能到达极,表示慢慢靠近始终无法达到,多用于双方的感情。对数螺线指等角螺线,指的是臂的距离以几何级数递增的螺线。
2023-08-04 00:58:251

对数螺旋线有什么特点

早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究.公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式.这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变.就像我们不能把角放大或缩小一样.当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛. 我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的.当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般.即使他用了圆规、尺子之类的工具.没有一个设计家能画出一个比这更规范的网来. 我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远.每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角.而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的. 不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角. 这种特性使我们想到数学家们所称的“对数螺线”.这种曲线在科学领域是很著名的.对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极.即使用最精密的仪器,我们也看不到一根完全的对数螺线.这种图形只存在科学家的假想中,可令人惊讶的是小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线的,而且做得很精确. 这螺旋线还有一个特点.如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置.这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一.
2023-08-04 00:58:341

黄金螺旋线的规律公式

黄金螺旋线的规律公式如下:黄金螺线是对数螺线的一种。对数螺线的公式是:ρ=αe^(φk),其中:α和k为常数,φ是极角,ρ是极径,e是自然对数的底。当公式中k=0.3063489 ,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…,这样形成的螺线就是黄金螺线,她有很多优美的特点。是极致中的极致,美中之美。同时说明黄金比例律为以e为自然底数的“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金比例律。黄金比例律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金比例律是凝固的“自然律”,“自然比例律”是运动着的黄金律。在黄金矩形(宽长之比为0.618的矩形)里靠着三边做成一个正方形,剩下的那部分则又是一个黄金矩形,可以依次再做成正方形。将这些正方形中心都按顺序联结,可得到一条“黄金螺线”。一直有一种谣传说在鹦鹉螺的身上和一些动物角质体上,或有甲壳的软体动物身上,都曾发现有“黄金螺线”。
2023-08-04 00:58:401

为什么自然界中存在这么多的对数螺线呢?

因为对数螺线具有等角性,受环境影响,很多直线运动会转变为等角螺线运动。我们以飞蛾扑火为例亿万年来,夜晚活动的蛾子等昆虫都是靠月光和星光来导航,因为天体距离很远,这些光都是平行光,可以作为参照来做直线飞行。如下图所示,注意蛾子只要按照固定夹角飞行,就可以飞成直线,这样飞才最节省能量。但自从人类学会了使用火,这些人造光源因为很近,光线成中心放射线状,可怜的蛾子就开始倒霉了。蛾子还以为按照与光线的固定夹角飞行就是直线运动,结果越飞越坑爹,飞成了等角螺线,最后飞到火里去了,这种现象还被人类称为昆虫的正趋光性。蛾子说:趋你妹的光啊,傻瓜才瞪着光飞,不知道会亮瞎眼啊?!!我们完全被人类误导了,亿万年才演化出的精妙直线导航方法,被人类的光污染干扰失效了!不用假慈悲的飞蛾扑火纱罩灯了,凸(#)凸,赶紧把灯关了吧!注意下图飞虫都在做螺线飞行,如果昆虫有趋光性。直飞不是更好吗?不要以为只有蛾子会这样,人在用指南针导航时也有同样的问题。根本原因是原来作为参考的平行场变成了中心发散的场,导致直线运动变成了螺线运动。我们也知道,绝对平行的场在自然界中是不存在的,只是我们为了计算方便,在小范围内近似认为平行而已。如果把尺度放大了看,更多的场是不平行的、是发散的,所以自然界中大量存在等角螺线现象就很正常了。例如理想状态下,流体应该是直线运动的,但在发散场和地球自转的作用下,就会像飞蛾一样走出类似等角螺线的形状,天上的台风和水中的漩涡就是这样形成的,不过实际情况远比这要复杂,只能近似这样考虑。关于对数螺线还有一个小笑话。对数螺线是笛卡儿在1638年发现的,雅各布伯努利也做了研究,并发现了许多非常优美的特性,经过各种变换,结果还保持原来的样子。他十分惊叹和欣赏这种美,要求死后自己的墓碑上一定要刻上对数螺线,以及墓志铭“纵使改变,依然故我”(eadem mutata resurgo)。结果石匠同志误将阿基米德螺线刻了上去,雅各布九泉有知一定会把棺材掀翻的!阿基米德螺线是这样的:常人的确看不出区别,你能看出来吗?千万不要搞混啊!
2023-08-04 00:59:001

对数螺线的弧长公式

对数螺线的弧长公式是r=e^θ,对数螺线一般指等角螺线,指的是臂的距离以几何级数递增的螺线,设L为穿过原点的任意直线,则L与等角螺线的相交的角A永远相等。等角螺线、对数螺线或生长螺线是在自然界常见的螺线,等角螺线的渐屈线和垂足线都是等角螺线。从原点到等角螺线的任意点上的长度有限,但由该任意点出发沿等角螺线走到原点却需绕原点转无限次。
2023-08-04 00:59:081

请问如何画对数螺旋线

画对数螺旋线的方法步骤: 1、直接输入命令“HELIX”,或者点击“绘图”、“螺旋线”,即可打开螺旋线绘制功能; 2、在绘图区域点击需要绘制螺旋线的圆点; 3、移动鼠标,或者直接输入底面圆半径; 4、移动鼠标,或者直接输入顶面圆半径; 5、如果需要修改圆圈数,就输入“t”之后,然后回车; 6、输入圈数后回车; 7、移动鼠标,或者直接输入螺旋圈的高度,然后点击绘图区,即可完成螺旋线的绘制。
2023-08-04 00:59:261

高数微积分,对数螺线求弧长,求指教怎么计算?

臂的距离以几何级数递增的螺线。设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等。
2023-08-04 00:59:483

求对数螺线的弧长公式和面积公式。面积公式很好求,关键是弧长公式不好求。这是极坐标方程

2023-08-04 01:00:084

求对数螺线r=e^aθ相应θ=0到θ=φ的一段弧长

弧长元素=rdθ则弧长=∫e^(aθ)*θdθ=1/a∫θd[e^(aθ)]=1/a*θ*e^(aθ)-1/a∫[e^(aθ)]dθ=1/a*θ*e^(aθ)-1/a*1/a*e^(aθ)+C0→φ为(φ/a-1/a^2)*e^(aφ)+1/a^2
2023-08-04 01:00:552

什么是对数螺线?是谁发明的?

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。雅各·贝努利是发明者 查看原帖>>麻烦采纳,谢谢!
2023-08-04 01:02:333

对数螺线是什么

详见http://baike.baidu.com/view/795.htm 对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。   螺线特别是对数螺线的美学意义可以用指数的形式来表达:   ρ=αe^(kφ)   其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数。   对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。
2023-08-04 01:02:421

什么是对数螺线?是谁发明的

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。
2023-08-04 01:02:501

对数螺线的参数方程

对数螺线的参数方程x=t·cos[ln(t)]y=t·sin[ln(t)]
2023-08-04 01:03:232

对数螺旋线有什么特点?在物理上用什么应用 ?和其他物理量有什么关系?

早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛。 我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。 我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。 不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。 这种特性使我们想到数学家们所称的“对数螺线”。这种曲线在科学领域是很著名的。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。即使用最精密的仪器,我们也看不到一根完全的对数螺线。这种图形只存在科学家的假想中,可令人惊讶的是小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线的,而且做得很精确。 这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。 那么,难道有着这些特性的对数螺线只是几何学家的一个梦想吗?这真的仅仅是一个梦、一个谜吗?那么它究竟有什么用呢? 它确实广泛的巧合,总之它是普遍存在的,有许多动物的建筑都采取这一结构。有一种蜗牛的壳就是依照对数螺线构造的。世界上第一只蜗牛知道了对数螺线,然后用它来造壳,一直到现在,壳的样子还没变过。 在壳类的化石中,这种螺线的例子还有很多。现在,在南海,我们还可以找到一种太古时代的生物的后代,那就是鹦鹉螺。它们还是很坚贞地守着祖传的老法则,它们的壳和世界初始时它们的老祖宗的壳完全一样。也就是说,它们的壳仍然是依照对数螺线设计的。并没有因时间的流逝而改变,就是在我们的死水池里,也有一种螺,它也有一个螺线壳,普通的蜗牛壳也是属于这一构造。 可是这些动物是从哪里学到这种高深的数学知识的呢?又是怎样把这些知识应用于实际的呢?有这样一种说法,说蜗牛是从蠕虫进化来的。某一天,蠕虫被太阳晒得舒服极了,无意识地揪住自己的尾巴玩弄起来,便把它绞成螺旋形取乐。突然它发现这样很舒服,于是常常这么做。久而久之便成了螺旋形的了,做螺旋形的壳的计划,就是从这时候产生的。 但是蜘蛛呢?它从哪里得到这个概念呢?因为它和蠕虫没有什么关系。然而它却很熟悉对数螺线,而且能够简单地运用到它的网中。蜗牛的壳要造好几年,所以它能做得很精致,但蛛网差不多只用一个小时就造成了,所以它只能做出这种曲线的一个轮廊,管不精确,但这确实是算得上一个螺旋曲线。是什么东西在指引着它呢?除了天生的技巧外,什么都没有。天生的技巧能使动物控制自己的工作,正像植物的花瓣和小蕊的排列法,它们天生就是这样的。没有人教它们怎么做,而事实上,它们也只能作这么一种,蜘蛛自己不知不觉地在练习高等几何学,靠着它生来就有的本领很自然地工作着。 我们抛出一个石子,让它落到地上,这石子在空间的路线是一种特殊的曲线。树上的枯叶被风吹下来落到地上,所经过的路程也是这种形状的曲线。科学家称这种曲线为抛物线。 几何学家对这曲线作了进一步的研究,他们假想这曲线在一根无限长的直线上滚动,那么它的焦点将要划出怎样一道轨迹呢?答案是:垂曲线。这要用一个很复杂的代数式来表示。如果要用数字来表示的话,这个数字的值约等于这样一串数字+1/1+1/1*2+1/1*2*3+1/1*2*3*4+……的和。 几何学家不喜欢用这么一长串数字来表示,所以就用“e”来代表这个数。e是一个无限不循环小数,数学中常常用到它。 这种线是不是一种理论上的假想呢?并不,你到处可以看到垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线;当船的帆被风吹着的时候,就会弯曲成垂曲线的图形;这些寻常的图形中都包含着“e”的秘密。一根无足轻重的线,竟包含着这么多深奥的科学!我们暂且别惊讶。一根一端固定的线的摇摆,一滴露水从草叶上落下来,一阵微风在水面拂起了微波,这些看上去稀松平常、极为平凡的事,如果从数学的角度去研究的话,就变得非常复杂了。 我们人类的数学测量方法是聪明的。但我们对发明这些方法的人,不必过分地佩服。因为和那些小动物的工作比起来,这些繁重的公式和理论显得又慢又复杂。难道将来我们想不出一个更简单的形式,并使它运用到实际生活中吗?难道人类的智慧还不足以让我们不依赖这种复杂的公式吗?我相信,越是高深的道理,其表现形式越应该简单而朴实。 在这里,我们这个魔术般的“e”字又在蜘蛛网上被发现了。在一个有雾的早晨,这粘性的线上排了许多小小的露珠。它的重量把蛛网的丝压得弯下来,于是构成了许多垂曲线,像许多透明的宝石串成的链子。太阳一出来,这一串珠子就发出彩虹一般美丽的光彩。好像一串金钢钻。“e”这个数目,就包蕴在这光明灿烂的链子里。望着这美丽的链子,你会发现科学之美、自然之美和探究之美。 几何学,这研究空间的和谐的科学几乎统治着自然界的一切。在铁杉果的鳞片的排列中以及蛛网的线条排列中,我们能找到它;在蜗牛的螺线中,我们能找到它;在行星的轨道上,我们也能找到它,它无处不在,无时不在,在原子的世界里,在广大的宇宙中,它的足迹遍布天下。 这种自然的几何学告诉我们,宇宙间有一位万能的几何学家,他已经用它神奇的工具测量过宇宙间所有的东西。所以万事万物都有一定的规律。我觉得用这个假设来解释鹦鹉螺和蛛网的对数螺线,似乎比蠕虫绞尾巴而造成螺线的说法更恰当。
2023-08-04 01:03:441

数三考对数螺线吗

不能确定,因为每次试卷题都不一样。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。螺线特别是对数螺线的美学意义可以用指数的形式来表达:ρ=αe^(kφ)其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为自然律。因此,自然律的核心是e,其值为2.71828,是一个无限不循环小数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。
2023-08-04 01:03:531

等角螺线又叫( )

等角螺线又叫对数螺线。等角螺线是由笛卡儿在1683年发现的。雅各布.伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词“纵使改变,依然故我”(eadem mutata resurgo)。可惜雕刻师误将阿基米德螺线刻了上去。等角螺线的臂的距离以几何级数递增。设L为穿过原点的任意直线,则L与等角螺线的相交的角永远相等(故其名),而此值为cot-1 lnb。设C为以原点为圆心的任意圆,则C与等角螺线的相交的角永远相等,而此值为tan-1 lnb,名为倾斜度。等角螺线是自我相似的;这即是说,等角螺线经放大后可与原图完全相同。等角螺线的渐屈线和垂足线都是等角螺线。从原点到等角螺线的任意点上的长度有限,但由那点出发沿等角螺线走到原点却需绕原点转无限次。这是由Torricelli发现的。
2023-08-04 01:04:001

求对数螺线ρ=ae^θ(-π

a^2/4(e^2π-e^-2π)
2023-08-04 01:04:351

对数螺线与斐波那契螺线的关系

这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。 这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。
2023-08-04 01:04:441

自然数e是什么

2.1415976
2023-08-04 01:05:034

自然数e的由来

自然对数 当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。 它是个无限不循环小数。 其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数。 以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。 为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。 因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。 e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。 正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。 熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。 退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。 这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。 如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。 任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。 新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。 正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。 因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。 “自然律”的形象表达是螺线。 螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。 对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。 对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。 伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。 事实上,我们也很容易在古今的艺术大师的作品中找到螺线。 为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。 化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。 这种音调就是所谓的“涡流尾迹效应”。 让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。 这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。 谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。 有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。 人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。 有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。 这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。 正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。 (原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)
2023-08-04 01:05:121

计算∫(L)ds,L为对数螺线ρ=ae^kθ(k>0)在圆ρ=a内的部分

人家不采纳,你有什么脾气?
2023-08-04 01:05:221

求对数螺线p=e^(at)相应于0≤t≤m的一段弧长?有谁会的?

微元:设ρ=f(θ) 那么弧长微元ΔL=1/2(f(θ)+f(θ+Δθ)) Δθ 这样弧长L=ΣΔL=Σ1/2(f(θ)+f(θ+Δθ)) Δθ=∫ f(θ)dθ 所以该题的弧长L就应该是e^(at)在0≤t≤m的积分
2023-08-04 01:05:291

求对数数螺线ρ=e^θ在点(ρ,θ)=(e^(π/2),π/2)处的切线的直角坐标方程。如题 谢谢了

把螺线方程改为参数方程:x=cosθe^θ,y=sinθe^θ,所以点(e^(π/2),π/2)的直角坐标为(e^(π/2),0),所以y"=-1所以切线方程为y-e^(π/2)=-(x-0),即x+y=e^(π/2)望楼主能采纳哦。
2023-08-04 01:05:382

请问:“e”是什么?

一个常数多用于科学上
2023-08-04 01:05:486

求对数螺线r=ae^θ【-pai pai】射线θ=π所围成的图形的面积。θ=π在这题中的作用是封闭图形

因为对数螺线是一个不断旋转的图形,但是每点都不会重合。射线θ=π相当于切断了它的旋转
2023-08-04 01:06:031

对数主要运用在人们生活的哪些方面? 请详细描述,最好举例子!

自然对数 当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的.它是个无限不循环小数.其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”. 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数. 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式.e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限. 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限.正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西. 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合.熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程.退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态.这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解.如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程. 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退.任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵.新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵. “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质.正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值. 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构.因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福. e=2.71828……是“自然律”的一种量的表达.“自然律”的形象表达是螺线.螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线.对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等.伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上. 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状.事实上,我们也很容易在古今的艺术大师的作品中找到螺线.为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的.化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的. 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调.这种音调就是所谓的“涡流尾迹效应”.让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状.这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础. 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉.谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成.有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一.人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等. “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达.有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一.这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然.正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量. 旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数. 数,美吗? 1、数之美 人们很早就对数的美有深刻的认识.其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻.他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的.例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低.因此,音乐的基本原则在于数量关系. 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范.例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”.所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段.”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美".”). 这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐.他们还认为,人体的机能也是和谐的,就象一个“小宇宙”.人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调.这些都是数的和谐. 中国古代思想家们也有类似的观点.道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派.《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论.儒家的荀卿也说过:“万物同宇宙而异体.无宜而有用为人,数也.”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证.所谓“得之于手而应用于心,口不能言,有数存在焉与其间”.这种从数的和谐看出美的思想,深深地影响了后世的中国美学. 2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例.我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态.中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比.舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比. 现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感.甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适.另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律. 然而,这并不意味着黄金律比“自然律”更具有美学意义.我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系.事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含.换言之,“自然律”囊括了黄金律. 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态.因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律. 3、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式.e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限. 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限.正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西. 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合.熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程.退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态.这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解.如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程. 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退.任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵.新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵. “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质.正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值. 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构.因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福. e=2.71828……是“自然律”的一种量的表达.“自然律”的形象表达是螺线.螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线.对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等.伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上. 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状.事实上,我们也很容易在古今的艺术大师的作品中找到螺线.为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的.化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的. 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调.这种音调就是所谓的“涡流尾迹效应”.让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状.这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础. 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉.谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成.有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一.人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等. “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达.有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一.这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然.正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量.(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》) 2,尤拉的自然对数底公式 (大约等于2.71828的自然对数的底——e) 尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者.数学史上称十八世纪为“尤拉时代”. 尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题. 尤拉一生谦逊,从没有用自己的名字给他发现的东西命名.只有那个大约等于2.71828的自然对数的底,被他命名为e.但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理. 我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等.高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你.”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方.” 这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知.有人甚至认为:尤拉取自己名字的第一个字母作为自然对数. 而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它.
2023-08-04 01:06:221

谁发明了对数螺旋线

早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛。 我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。 我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。 不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。 这种特性使我们想到数学家们所称的“对数螺线”。
2023-08-04 01:06:301

数学中的E代表什么

高中数学的存在量词,就是存在一个或至少有一个
2023-08-04 01:06:405

e是什么?如何得到的呢?e能干什么?

自然底数,这个是规定的,没有什么
2023-08-04 01:06:571

对数螺线极轴是x轴还是y轴

对数螺线极轴是x轴还是y?是y轴。
2023-08-04 01:07:031

数学中e代表什么啊?

e就是大家定义的一个常数e约等于2.23……只是用于计算时方便一些
2023-08-04 01:07:134

科学对数e是多少

自然对数 又称“双曲对数”。以超越数[fc(]e=1+11!+12!+13!+…=271828…[fc)]为底的对数。用记号“ln”表示。有自然对数表可查。 当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)
2023-08-04 01:07:371

当0≤θ≤π时,对数螺线r=eθ的弧长为______

∵r=eθ,0≤θ≤π∴ds=r2(θ)+r′2(θ)dθ=2eθdθ∴s=∫π02eθdθ=2(eπ?1)
2023-08-04 01:07:452

黄金螺线的介绍

黄金螺线是对数螺线的一种。在极坐标中,对数螺线的方程是:ρ=αe^(φk),其中:α和k为常数,φ是极角,ρ是极径,e是自然对数的底。
2023-08-04 01:08:381

自然底数e与银行利息的关系

e与银行利息是没有关系的。只是在计算复利时,计息期限为无穷大时,所应用的函数,可能会与e有关。
2023-08-04 01:08:543

数学中的 e 具体是多少啊?

e是超越数怎么可能表达出来
2023-08-04 01:09:1310

求对数螺线r=eu02c6aθ相应θ=0到θ=φ的一段弧长

简单计算一下即可,答案如图所示
2023-08-04 01:09:361

求对数螺线p=e^2θ相应于0-π的一段弧长

根据弧长公式s=rθds=pdθs=∫(0,π)e^2θ =(e^2θ)/2|(0,π) =(e^2θ-1)/2
2023-08-04 01:10:042

对数主要运用在人们生活的哪些方面?

自然对数当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828...它用e表示以e为底数的对数通常用于㏑而且e还是一个超越数e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 数,美吗? 1、数之美 人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。”)。 这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。 中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。 2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。 现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。 然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。 3、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)2,尤拉的自然对数底公式 (大约等于2.71828的自然对数的底——e) 尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。 尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。 尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。 我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。” 这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。 而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。
2023-08-04 01:10:341

对角螺线的弧长公式

r=e^θ。对数螺线的弧长公式为:r=e^θ。对数螺线的弧长公式为:r=e^θ。
2023-08-04 01:10:423

数学中e的来历

e是自然对数,lne=1,e=2.71828……,是一个无限循环数 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。 为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。 因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 数,美吗? 1、数之美 人们很早就对数的美有深刻的认识。 其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。 他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。 例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。 因此,音乐的基本原则在于数量关系。 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。 例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。 所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。 ”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。 ”)。 这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。 他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。 人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。 这些都是数的和谐。 中国古代思想家们也有类似的观点。 道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。 《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。 儒家的荀卿也说过:“万物同宇宙而异体。 无宜而有用为人,数也。 ”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。 所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。 这种从数的和谐看出美的思想,深深地影响了后世的中国美学。 2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。 我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。 中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。 舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。 现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具 *** 。 甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。 另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。 然而,这并不意味着黄金律比“自然律”更具有美学意义。 我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。 事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含。 换言之,“自然律”囊括了黄金律。 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。 因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。 3、“自然律”之美 “自然律”是e及由e经过一定变换和复合的形式。 e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限。 正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。 熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。 退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。 这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。 如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。 任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。 新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。 正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。 因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。 “自然律”的形象表达是螺线。 螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。 对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。 对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。 伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。 事实上,我们也很容易在古今的艺术大师的作品中找到螺线。 为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。 化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。 这种音调就是所谓的“涡流尾迹效应”。 让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。 这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。 谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。 有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。 人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。 有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。 这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。 正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。 尤拉的自然对数底公式 (大约等于2.71828的自然对数的底———e) 尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。 数学史上称十八世纪为“尤拉时代”。 尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。 尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。 只有那个大约等于2.71828的自然对数的底,被他命名为e。 但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。 我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。 高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。 ”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。 ” 这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。 有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。 而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。 自然对数e的由来: 它是一个数列的极限,当n趋向于无穷大时,[(1/n)+1]的n次方,这一数列的值趋向于e,也就是2.71828……。 它是一个无理数。 同样的,圆周率pi也是一个数列的极限,写出来太复杂了一点。 当年祖冲之的圆周率就是就逼近法求得的。 数学上最重要的五个数,分别是e,pi,i(虚数单位),0和1。 这五个数正好能组成一个公式:e的(i*pi)次方,再加上1等于0。 这个公式体现了数学的内在美,是公认的最完美的公式。
2023-08-04 01:10:501

求一个对数螺旋线的表达式。

这就是极坐标,r和θ是变量极径和极角,其他都是已知数,两边平方并取对数得ln(x^2+y^2)=2lnrg+2tgα*arctan(y/x)……①,两边求导整理得x=-tgα*y,带入①式整理得ln[(secα)^2*y^2]=2lnrg+2tgα(α-π/2),此式只含y变量,可解出y,x=-tgα*y
2023-08-04 01:10:581

求对数螺线p=e^相应于0≤t≤m的一段弧长?有谁会的

微元:设ρ=f(θ) 那么弧长微元ΔL=1/2(f(θ)+f(θ+Δθ)) Δθ 这样弧长L=ΣΔL=Σ1/2(f(θ)+f(θ+Δθ)) Δθ=∫ f(θ)dθ 所以该题的弧长L就应该是e^(at)在0≤t≤m的积分
2023-08-04 01:11:051

为什么1的正无穷次方是e?

没听说过。赫赫
2023-08-04 01:11:2714

求对数螺线r=ae^θ【-pai pai】射线θ=π所围成的图形的面积。θ=π在这题中的作用是什么。

对数螺线r=ae^θ【-pai pai】是一个螺旋线,不是封闭的图形。在θ=π,或者θ=-π时不连接,θ=π是为了使图形成为封闭图形的。
2023-08-04 01:12:111