- 铁血嘟嘟
-
就是那个多项式里面未知数的最高次方是n,比如x(平方)+2x+1这个多项式就是2次多项式,x(四次方)+2x(五次方)+x这个多项式就是5次多项式
多项式的定义
简单分析一下,详情如图所示2023-08-02 08:33:542
多项式的定义是什么
由若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。2023-08-02 08:35:513
多项式的定义
多项式的定义:在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。2023-08-02 08:36:321
多项式的定义是什么?
在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。数学:数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。2023-08-02 08:36:411
什么是多项式
由多个单项式组成的式子2023-08-02 08:36:592
什么是多项式??
若干个单项式的和组成的式叫做多项式多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.不含字母的项叫做常数项对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项拓展资料单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。单项式中的数字因数叫做这个单项式的系数(Coefficient),一个单项式中,所有字母的指数的和叫做这个单项式的次数(Degree of a monomial)。单项式是几次,就叫做几次单项式。2023-08-02 08:37:081
什么是多项式?并举例说明。
多项式的定义 由数和文字符号x进行加法和乘法运算的式子,称之为x的多项式 x 不可以在分母,绝对值,根号下面2023-08-02 08:37:231
什么是多项式
由若干个单项式相加组成的代数式叫做多项式。1、多项式:在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。2、运算法则:有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。3、单项式与多项式相乘时注意事项:(1)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;(2)运算时要注意积的符号,多项式的每一项都包括它前面的符号;(3)在混合运算时,要注意运算顺序。单项式和多项式的区别:1、定义不同。由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。在数学中,由若干个单项式相加组成的代数式叫做多项式。2、用法不同。单项式:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1,分数和字母的积的形式也是单项式。多项式:若有减法,减一个数等于加上它的相反数。2023-08-02 08:37:491
单项式和多项式的定义是什么?
一般的,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,在把所得的积相加。2023-08-02 08:38:498
初中多项式的定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。应用函数及其根给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P"(x)的重叠根且有n-1个。2023-08-02 08:39:281
单项式和多项式概念
单项式多项式的概念如下:单项式:由数或字母符号的积构成的代数式称为单项式,独立的一个数或一个字母符号也称为单项式。多项式:在数学中,由多个单项式累加构成的代数式称为多项式。多项式中的每一个单项式称为多项式的项,这类单项式中的最大项频次,就是这个多项式的次数。在其中多项式中不包括字母符号的项称为常数项。单项式和多项式二者区别:1、定义区别:任意一个字母和数字的积,或者一个字母或数字都叫单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。由若干个单项式的和组成的代数式叫做多项式。在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。2、几何特性区别:①多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。②单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。③需要注意的是,分母含有未知数的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。2023-08-02 08:39:381
什么是多项式的一次项、二次项、三次项……
主要看未知数的次数2023-08-02 08:40:066
怎样区分单项式和多项式
定义不同单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。2023-08-02 08:40:3711
多项式的次数的定义 多项式的次数的定义是什么
多项式的次数指的是:在多项式中,次数最高的项的次数。多项式由若干个单项式组成,多项式的次数取决于这些单项式中的最高项次数,多项式中不含字母的项叫做常数项。多项式的次数是1993年公布的数学名词。 多项式的次数的定义 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数。在多项式中,每个单项式叫做这个多项式的项,其中不含字母的项叫做常数项,如:5X+6中的6就是常数项。一个多项式含有几项就叫几项式,一个多项式含有几项,就叫几项式。 单项式的次数 一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式的次数只与字母的指数有关,一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。2023-08-02 08:41:121
几次多项式是什么定义的
由若干个单项式的和组成的代数式叫做多项式,多项式中每个单项式叫多项式的项,这些单项式中的最高次数,就是这个多项式的次数。比如一个多项式是由3个单项式组成的,这三个单项式中最高次数是2,那么这个多项式就叫做二次三项式。 单式项 1、由数与字母或字母与字母相乘组成的代数式叫做单项式。 2、单独一个字母或数字也叫单项式。 3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 4、单项式的系数:单项式中的数字因数。如:2xy的系数是2;-5zy的系数是-5 单项式的运算 1、单项式加减法则 单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。 例如:3a+4a=7a,9a-2a=7a等 2、单项式乘法法则 单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 例如:3a·4a=12a^2 3、单项式除法法则 同底数幂相除,底数不变,指数相减。2023-08-02 08:41:391
什么是多项式,复数,有理数,无理数,实数。
若干个单项式的和组成的式子叫做多项式;复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根);有理数(rational number):能精确地表示为两个整数之比的数。包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。 如3,-98.11,5.72727272……,7/22都是有理数;无理数,即非有理数之实数,不能写作两整数之比;小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。——资料来自百度百科请采纳,谢谢~2023-08-02 08:41:461
初中数学多项式的定义和应用
多项式是指由变量、系数以及它们之间的加、减、乘、幂运算得到的表达式,在多项式中,每个单项式叫做多项式的项。 多项式的定义 在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。 应用 函数及其根 给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。 若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。 例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根! 例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。 另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。 若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P"(x)的重叠根且有n-1个。2023-08-02 08:42:071
什么是多项式?
首先需要了解单项式的定义:由数字与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式)。多项式就是由多个单项式经加号或减号组成的式子。如:多项式a+bx-cx^2+xx,其中a、bx、cx^2、xx是分别的单项式,但是用“+”或“-”连接起来后就是多项式了2023-08-02 08:42:131
多项式的定义是什么意思(多项式的定义与概念)
1、多项式的定义是什么。 2、多项式指的是什么。 3、啥叫多项式。 4、多项式的项定义是什么。1.若干个单项式的和组成的式叫做多项式多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。2023-08-02 08:42:201
多项式 定义
整式中不是单项式的为多项式 它是根式它是分式2023-08-02 08:42:283
什么叫多项式什么叫单项式
什么叫多项式若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。什么叫单项式单项式:1.任意个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。2.一个字母或数字也叫单项式。3.分母中不含字母(单项式是整式,而不是分式)a,-5,1X,2XY,x/2,都是单项式,而0.5m+n,2/x不是单项式。单项式的次数是指单项式中所有字母因数的指数和1、由数或字母的积组成的代数式叫作单项式,单独的一个数或一个字母也叫作单项式。例如:0可看作0乘a,1可以看作1乘指数为0的字母,b可以看作b乘1。2、由若干个单项式的和组成的代数式叫作多项式。例如:减法中有减一个数等于加上它的相反数。辗转相除法利用辗转相除法的算法,可将u0192(x)与g(x)的最大公因式rs(x)表成u0192(x)和g(x)的组合,而组合的系数是F上的多项式。如果u0192(x)与g(x)的最大公因式是零次多项式,那么称u0192(x)与g(x)是互素的。最大公因式和互素概念都可以推广到几个多项式的情形。如果F[x]中的一个次数不小于1的多项式u0192(x),不能表成 F[x] 中的两个次数较低的多项式的乘积,那么称u0192(x)是F上的一个不可约多项式。2023-08-02 08:42:362
多项式的定义
多项式的定义:在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。多项式的运算法则1、多项式与多项式的乘法法则(1)当一个多项式乘以一个多项式时,一个多项式的每一项乘以另一个多项式的每一项,然后乘积相加。(2)当两个多项式相乘时,应该防止漏项。(3)多项式是单项式的和,每个项包括前面的符号。在操作过程中,要注意确定产品中每一项的符号。2、单项式与单项式的乘法定律(1)单项式和单项式的乘法分别乘以它们的系数和同一基的幂。对于只包含在一个单项式中的字母,它们的指数作为乘积的一个因子。(2)单项式与单项式乘法的运算步骤乘以它们的系数,包括符号的计算;乘以基数的幂;只有单项式中包含的字母及其指数保持不变。取这三部分的乘积作为计算结果。2023-08-02 08:43:421
多项式的定义是什么
简单分析一下,详情如图所示2023-08-02 08:43:572
多项式的概念。。。是什么
在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。扩展资料:加法与乘法有限的单项式之和称为多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。F上x1,x2,…,xn的多项式全体所成的集合Fx{1,x2,…,xn},对于多项式的加法和乘法成为一个环,是具有单位元素的整环。域上的多元多项式也有因式分解惟一性定理。2023-08-02 08:45:231
什么叫做多项式
在数学中,由若干个 单项式 相加组成的代数式叫做多项式(若有 减法 :减一个数等于加上它的 相反数 )。 多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。 其中多项式中不含字母的项叫做 常数项 。在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。2023-08-02 08:45:361
多项式的概念。。。是什么
若干个单项式的和组成的式子叫做多项式祝开心!希望能帮到你~~2023-08-02 08:45:585
多项式的概念是什么 多项式是什么意思
1、在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。 2、对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。2023-08-02 08:46:271
什么是多项式??
由若干个单项式的和组成的代数式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。 在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(正整数次方)得到的表达式。 对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。 多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。2023-08-02 08:46:3714
多项式定义
多项式的定义由数和文字符号x进行加法和乘法运算的式子,称之为x的多项式x不可以在分母,绝对值,根号下面2023-08-02 08:47:162
多项式是怎么定义的?
多项式polynomial若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。单项式:1.任意个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。2.一个字母或数字也叫单项式。3.分母中不含字母(单项式是整式,而不是分式)a,-5,1X,2XY,x/2,都是单项式,而0.5mn,2/x不是单项式。单项式的次数是指单项式中所有字母因数的指数和这个名词是清代数学家李善兰译书时根据原词概念汉化的。2023-08-02 08:47:315
多项式的定义是什么 多项式的定义
1、在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。 2、多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。2023-08-02 08:47:471
什么是多项式
若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式。比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大。2023-08-02 08:48:072
什么叫项式和什么叫多项式?
若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。不含字母的项叫做常数项。2023-08-02 08:48:172
单项式 多项式的定义
由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。若干个单项式的和组成的式子叫做多项式2023-08-02 08:48:262
一次多项式的定义是什么
一次多项式的定义是所有项的最高次数都是12023-08-02 08:48:351
初中多项式的定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。应用函数及其根给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1,...,an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P"(x)的重叠根且有n-1个。2023-08-02 08:48:441
一次多项式的定义是什么
一次多项式的定义是所有项的最高次数都是12023-08-02 08:49:052
单项式和多项式的定义
由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。分数和字母的积的形式也是单项式。多项式是由若干个单项式相加组成的代数式。 单项式的定义 由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。这个名词是清代数学家李善兰译书时根据原词概念汉化的。 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式是几次,就叫做几次单项式。 多项式的定义 在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。 多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。 单项式的性质 1.任意一个字母和数字的积的形式是单项式。(除法中有:除以一个数等于乘这个数的倒数)。 2.单独一个字母或数字也叫单项式。0也是数字,也属于单项式。如果一个单项式,只含有数字因数,那么它的次数为0。 3.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。a,-5,x,2xy都是单项式,而0.5m+n,1/x不是单项式。 4.有些分数也属于单项式。x/π是单项式,因为π不是字母。 5.单项式是字母与数的乘积。 6.用运算符号把表示数的字母或数连接起来的式子叫代数式。代数式不能含有“≥”、“=”、“<”、“≠”符号等。2023-08-02 08:49:142
多项式次数的定义?
单项式的次数:单项式中各个字母的指数之和,叫做单项式的次数 多项式的次数:多项式中最高单项式的次数叫做多项式的次数例如:x^2yz+3xy+4x+5 4次 2次 1次 常数项所以这个多项式为4次4项式,多项式次数为42023-08-02 08:49:301
单项式和多项式的概念是什么?
单项式定义:表示数或字母的积的式子叫做单项式。单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。 注意: 1,分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如,1/x不是单项式。 2,单独的一个数字或字母也是单项式。例如,1和x^2y也是单项式。 3,单项式表示数与字母相乘时,通常把数写在前面。 如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。 如果一个单项式,只含有数字因数,那么它的次数为0。多项式:若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。2023-08-02 08:49:392
多项式的次数的定义
多项式的次数指的是:在多项式中,次数最高的项的次数。多项式由若干个单项式组成,多项式的次数取决于这些单项式中的最高项次数,多项式中不含字母的项叫做常数项。多项式的次数是1993年公布的数学名词。 多项式的次数的定义 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数。在多项式中,每个单项式叫做这个多项式的项,其中不含字母的项叫做常数项,如:5X+6中的6就是常数项。一个多项式含有几项就叫几项式,一个多项式含有几项,就叫几项式。 单项式的次数 一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式的次数只与字母的指数有关,一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。2023-08-02 08:49:481
单项式和多项式的定义分别是什么?
由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。2023-08-02 08:50:082
单项式和多项式的区别
单项式和多项式的区别如下:1、定义不同单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。2、用法不同单项式:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1,分数和字母的积的形式也是单项式。多项式:若有减法,减一个数等于加上它的相反数。2023-08-02 08:50:171
在多项式里,什么叫做多项式的项
单项式和常数项2023-08-02 08:50:342
什么叫做多项式,什么叫做多项式的因式分解 概念
若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数).多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.不含字母的项叫做常数项.如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式. 比较广义的定义,1个或0个单项式的和也算多项式.按这个定义,多项式就是整式.实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大. 因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分 x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a).如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式. 经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、 分解因式x^3 -2x^2 -x(2003淮安市中考题) x^3 -2x^2 -x=x(x^2 -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题) a^2 +4ab+4b^2 =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m^2 +5n-mn-5m m^2+5n-mn-5m= m^2-5m -mn+5n = (m^2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x^2 -19x-6 分析: 1 -3 7 2 2-21=-19 7x^2 -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x^2 +3x-40 解x^2 +3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来. 例7、分解因式2x^4 -x^3 -6x^2 -x+2 (解答错误太多,请大牛再分一遍吧) 8、 求根法 令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn ) 例8、分解因式2x^4 +7x^3 -2x^2 -13x+6 令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0 通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1 则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图像法 令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn ) 例9、因式分解x^3 +2x^2 -5x-6 令y= x^3 +2x^2 -5x-6 作出其图像,与x轴交点为-3,-1,2 则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解. 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式. 例11、分解因式x^3 +9x^2 +23x+15 令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,验证后的确如此. 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多2023-08-02 08:50:541
多项式单项式的定义
单项式定义:表示数或字母的积的式子叫做单项式。单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。 注意: 1,分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如,1/x不是单项式。 2,单独的一个数字或字母也是单项式。例如,1和x^2y也是单项式。 3,单项式表示数与字母相乘时,通常把数写在前面。 如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。 如果一个单项式,只含有数字因数,那么它的次数为0。多项式:若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。2023-08-02 08:51:011
多项式次数的定义?
单项式的次数:单项式中各个字母的指数之和,叫做单项式的次数 多项式的次数:多项式中最高单项式的次数叫做多项式的次数 例如:x^2yz+3xy+4x+5 4次 2次 1次 常数项 所以这个多项式为4次4项式,多项式次数为42023-08-02 08:51:091
多项式相伴是如何定义的?
在数域K上的一元n次多项式f(x),g(x)若满足:g(x)整除f(x) 且 f(x)整除g(x)则称f(x)与g(x)相伴,记为:f(x)~g(x)f(x)~g(x)的充分必要条件是:f(x)=c*g(x) (c∈K,c≠0)2023-08-02 08:51:471
多项式的项数是什么?
多项式的项数是指多项式中含单项式的个数。在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。多项式中不含字母的项叫做常数项。如:5X+6中的6就是常数项。2023-08-02 08:51:561
多项式 的定义 次数 项
定义:多个单项式的乘积的和组成的代数式叫做多项式。次数:多项式中,次数最高项(单项式)的次数,叫做这个多项式的次数。项:多项式中的每个单项式叫做多项式的项。2023-08-02 08:52:242