汉邦问答 / 问答 / 问答详情

等差数列前n项和的公差

2023-07-30 21:58:27
水元素sl
一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均属于正整数

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
西柚不是西游

你说的是公式吧:

Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2,n为正整数

    黑桃花

    等差数列前n项和的基本公式有两个:

    ① Su2099=n(au2081+au2099)/2;

    ② Su2099=nau2081+dn(n-1)/2.

    等差数列的前N项和怎么求?

    等差数列前N项和公式:①Sn=n*a1+n(n-1)d/2②Sn=n(a1+an)/2Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。性质:⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).⑵在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1).⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).2. 等比数列前N项和公式:Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,q代表数列的公比。性质:①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;②在等比数列中,依次每 k项之和仍成等比数列;③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);⑤在等比数列中,首项a1与公比q都不为零.⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1⑦当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。
    2023-07-29 08:01:541

    等差数列前n项和怎么求?

    等差数列前n项和公式推导:(1) Sn=a1+a2+......an-1+an也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n(a1+an)]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d,项数为n,则 an=a1+(n-1)d代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)
    2023-07-29 08:03:171

    求等差数列前n项和的方法

      求等差数列前n项和的方法:   1、用倒序相加法求数列的前n项和。   如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。   2、用公式法求数列的前n项和(等差数列公式求和公式:Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2)。   对等差数列,求前n项和Sn可直接用等差数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。   3、用裂项相消法求数列的前n项和。   裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。   4、用构造法求数列的前n项和。   所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。
    2023-07-29 08:03:521

    求等差数列前N项和的公式是什么

    a1*n+(n^2-n)*(d/2) a1表示首项 ^2表示平方
    2023-07-29 08:04:023

    等差数列的前n项和有什么性质

    这样子好懂(?▽?)
    2023-07-29 08:04:333

    等差数列的前n项和的前n项和怎么求

    sn=n﹙a1+an﹚/2
    2023-07-29 08:04:412

    等差数列前n项和公式是什么?

    Sn=n(a1+an)/2,Sn=na1+n(n-1)d/2。
    2023-07-29 08:04:503

    等差乘以等差数列的前n项和怎么求

    an = n(n+2) = n(n+1) +n = (1/3)[n(n+1)(n+2) -(n-1)n(n+1)] + (1/2)[n(n+1) -(n-1)n]Sn = a1+a2+...+an =(1/3)n(n+1)(n+2) + (1/2)n(n+1) =(1/6)n(n+1)(2n+7)
    2023-07-29 08:05:003

    等差数列各项平方的和怎么算

    错了错了
    2023-07-29 08:05:093

    等差数列前N次项的和的公式

    a(n)=a1+(n-1)dSn=na1+n*(n-1)d/2等差数列前N项和公式S=(A1+An)N/2等差数列公式求和公式Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2希望我的回答对您有帮助
    2023-07-29 08:06:031

    等差数列前n项和公式?

    1.Sn=n(a1+an)/22.Sn=na1+n(n-1)d/2
    2023-07-29 08:06:144

    等差数列前n项和是什么?

    a1*n+n(n+1)/2
    2023-07-29 08:06:336

    等差数列递增怎么求前n项和?

    递增计算公式是:(首项+末项)×(项数÷2)。首项×项数+【项数(项数-1)×公差】/2。{【2首项+(项数-1)×公差】项数}/2。n = 100x(1+0.05)^n。Sn = a1+a2+...+an。= 100x(1+0.05) x[ (1+0.05)^n - 1 ] /[ (1+0.05) -1 ]。=2100 x [ (1+0.05)^n - 1 ]。到n年,加起来的总数是多少。=Sn。=2100 x [ (1+0.05)^n - 1 ]。这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。其他推论:① 和=(首项+末项)×项数÷2。②项数=(末项-首项)÷公差+1。③首项=2x和÷项数-末项或末项-公差×(项数-1)。④末项=2x和÷项数-首项。⑤末项=首项+(项数-1)×公差。⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
    2023-07-29 08:06:491

    等差数列前n项和公式的推导方法是什么?

    试题答案:采纳我的吧。。
    2023-07-29 08:07:0411

    怎样计算等差数列前n项和?

    如果等差数列没有学过,那就用这个方法。先找规律,式中加数都是按顺序的奇数,数值依次递增2,再确定一共有几项,(2021+1)/2=1011,为奇数,先剔除最后一项2021,最后把剩余的收尾相加,每一组的和都相等,1+2019=2020,3+2017=2020...........2020的个数一共有总项数的一半,所以1+3+5+7+......+2017+2019+2021=(1+2019)+(3+2017)+...+2021=2020×1010/2+2021=1022121形式:把相等的式子(或字母表示的数)通过“=”连接起来。等式分为含有未知数的等式和不含未知数的等式。例如:x+1=3——含有未知数的等式;2+1=3——不含未知数的等式。需要注意的是,个别含有未知数的等式无解,但仍是等式,例如:x+1=x——x无解。
    2023-07-29 08:07:291

    等差数列的前n项和的数学知识点

      (1),(2),(3),(4)   当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。   等差数列的前n项和的有关性质:   (1),…成等差数列;   (2){an}有2k项时,=kd;   (3){an}有2k+1项时,S奇=(k+1)ak+1=(k+1)a平, S偶=kak+1=ka平,S奇:S偶=(k+1):k,S奇-S偶=ak+1=a平;   解决等差数列问题常用技巧:   1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。   为减少运算量,要注意设元的技巧,时间管理,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,…   2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q);   (2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。
    2023-07-29 08:07:361

    等差数列的前N项和是什么

    第N项=首项+(项数-1)*公差
    2023-07-29 08:07:463

    等差数列前n项和的性质

    等差数列的求和:和=(首项+尾项)×项数/2和=中间项×项数。第一个式子S(2n-1)=(A1+A(2n-1))*((2n-1)/2用的是上面的第一个等式。第二个式子S(2n-1)=(2n-1)*An用的是上面的第二个等式。S奇=A1+A3+A5+……+A(2n-3)+A(2n-1)共(2n-1-1)÷2+1=n项,S奇=(A1+A(2n-1))*n/2S偶=A2+A4+A6+……+A(2n-2)共(2n-2-2)÷2+1=n-1项,S偶=(A2+A(2n-2))*(n-1)/2又A2+A(2n-2)=A1+A(2n-1)所以,S奇/S偶=n/(n-1)S奇=(A1+A(2n-1))*n/2=n*AnS偶=(A2+A(2n-2))*(n-1)/2=(n-1)*An所以,S偶-S奇=-An
    2023-07-29 08:08:102

    写出等差数列的前n项和公式

    前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 以上n均属于正整数从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)=0。
    2023-07-29 08:08:191

    等差数列前n项和公式推导

    等差数列前n项和公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-an-1=d,将上述式子左右分别相加,得出an-a1=(n-1)*dan=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n2+(a1-d/2)*n注:以上n均属于正整数。等差数列是常见的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个差,公差常用字母d表示。第n项的值an=首项+(项数-1)×公差an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an例如 a10=a4+6d或者a3=a7-4d前n项的和Sn=首项×n+项数(项数-1)公差/2公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)项数=(末项-首项)÷公差+1末项=首项+(项数-1)×公差当数列为奇数项时,前n项的和=中间项×项数数列为偶数项,前n项的和=(首尾项相加×项数)÷2等差数列中项公式2an+1=an+an+2其中{an}是等差数列等差数列的和=(首项+末项)×项数÷2
    2023-07-29 08:08:371

    等差数列前n项和的性质的证明?

    sn,s2n-sn,s3n-s2n..........成等差数列,公差为n^2*d证明如下:sk=ka1+k(k-1)d/2s2k=2ka1+2k(2k-1)d/2s3k=3ka1+3k(3k-1)d/2s2k-sk=ka1+k(3k-1)d/2s3k-s2k=ka1+k(5k-1)d/2(s2k-sk)-sk=k^2*d(s3k-s2k)-(s2k-sk)=k^2*d所以等差数列依次每项k之和仍为等差数列,其公差为原公差的k^2倍,即数列sk,s2k-sk,s3k-s2k也为等差数列例子如下:设等差数列an的前n项和为sn,若s3=9,s6=36,则a7+a8+a9=?运用以上的性质,可得:s3,s6-s3,s9-s6成等差数列则2(s6-s3)=s3+(s9-s6)得到s9-s6=2s6-3s3=45故a7+a8+a9=45第二个例子设等差数列前6项为2,4,6,8,10,12则s2,s4-s2,s6-s4成等差数列,s2=6,s4-s2=14,s6-s4=22,它们的公差是8,是2^2*2,所以sn,s2n-sn,s3n-s2n..........成等差数列,公差是n^2*d,而不是n*d。继续上面这个题,求s20-s18的值因为s2,s4-s2,s6-s4,........是首项为s2,公差为8的等差数列所以s20-s18=s2+8*9=6+72=78答毕
    2023-07-29 08:08:591

    如图、等差数列前N项和公式、这两个有什么区别?什么时候该用哪个?

    当首项a1,末项an,项数n为已知条件时,用第一个当仅仅知道首项a1和项数n的时候,用第二个
    2023-07-29 08:09:181

    等差数列的前n项和是多少

    总和是5050。观察1到100这100个数,可以发现,1+100=101,2+99=101,3+98=101...共有50组这样的组合,故这100个数的和为:50*101=5050。扩展资料等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1);当项数为(2n-1)(n∈ N+)时,S奇—S偶=a(中),S奇-S偶=项数*a(中) ,S奇÷S偶 =n÷(n-1).当合数是由单个素因子组成时,如由单个素因子3组成的合数9,27,81等,等差数列的公差能够被该单个素因子整除时,该等差数列除以合数的余数为:9/3=3个,27/3=9个,81/3=27个循环排列。具体余数为该等差数列的首项/素因子的余数+素因子*L所得。如首项/3余1,其余数为1+3L,例如等差数列1+30N数列除以合数9余数按1,4,7进行循环;如首项/3余0,其余数为0+3L,例如等差数列3+30N数列除以合数9的余数按3,6,0进行循环。
    2023-07-29 08:09:541

    等差数列前N项和公式?

    等差数列前N项和公式:①Sn=n*a1+n(n-1)d/2。②Sn=n(a1+an)/2。Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);项数=(末项-首项来)÷公差+1;末项=首项+(项数-1)×公差;前n项的和Sn=首项×n+项数(项数-1)公差/2;第n项的值an=首项+(项数-1)×公差;等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。
    2023-07-29 08:10:111

    等差数列中的前n项和公式是什么?

    奇数项和:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n扩展资料:等差数列:是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。等差中项:等差中项即等差数列头尾两项的和的一半,但求等差中项不一定要知道头尾两项。等差数列中,等差中项一般设为A(r)。当A(m),A(r),A(n)成等差数列时,A(m)+A(n)=2×A(r),所以A(r)为A(m)、A(n)的等差中项,且为数列的平均数。并且可以推知n+m=2×r,且任意两项a(m)、a(n)的关系为:a(n)=a(m)+(n-m)*d,(类似p(n)=p(m)+(n-m)*b(1),相当容易证明,它可以看作等差数列广义的通项公式。参考资料:百度百科-等差数列
    2023-07-29 08:10:181

    等差数列前n项和公式是什么?

    Sn+1-Sn=an+1Sn=a1+a2+……+anSn+1=a1+a2+……+an+an+1所以Sn+1-Sn=an+1等差数列指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+/2或Sn=/2。注意:以上n均属于正整数。
    2023-07-29 08:10:321

    等差数列前n项和是怎么计算的?

    一、等差数列前n项和公式推导:(1) Sn=a1+a2+......an-1+an也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n(a1+an)]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d,项数为n,则 an=a1+(n-1)d代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)
    2023-07-29 08:10:521

    等差数列的前n项和怎么求?

    前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 以上n均属于正整数从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)=0。
    2023-07-29 08:11:121

    等差数列前N项和公式是什么?

    等差数列前N项和公式:①Sn=n*a1+n(n-1)d/2。②Sn=n(a1+an)/2。Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);项数=(末项-首项来)÷公差+1;末项=首项+(项数-1)×公差;前n项的和Sn=首项×n+项数(项数-1)公差/2;第n项的值an=首项+(项数-1)×公差;等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。
    2023-07-29 08:11:211

    等差数列的前n项和公式及推导过程

    1、a(n)=a1+(n-1)d。Sn=na1+n*(n-1)d/2。等差数列前N项和公式S=(A1+An)N/2。等差数列公式求和公式 Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2。 2、公式为Sn=n(a1+an)/2,推导:Sn=a1+a2+……+a(n-1)+an。 3、则由加法交换律:Sn=an+a(n-1)+……+a2+a1。 4、两式相加:2Sn=(a1+an)+[a2+a(n-1)]+……+[a(n-1)+a2]+(an+a1)。 5、因为等差数列中a1+an=a2+a(n-1)=…… 6、所以2Sn=n(a1+an)。 7、所以Sn=(a1+an)*n/2。
    2023-07-29 08:11:301

    等差数列前n项和是多少?

    方法一:2+4+6+……+18+20=(2+20)+(4+18)+……+(10+12)=22*5=110方法二:等差数列前n项和:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。将其看作是一个等差数列:s=10*(2+20)/2=110。扩展资料:等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。参考资料:等差数列_百度百科
    2023-07-29 08:11:431

    等差数列前n项和的性质

    (A1+A(2n-1))/2即是数列的中间项
    2023-07-29 08:11:533

    等差数列前n项和之间的关系

    等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2
    2023-07-29 08:12:111

    等差数列的前N项和怎么求?

    等差数列前N项和公式S=(A1+An)N/2 ,等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。注意: 以上整数。扩展资料日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n,则am+n=0。其于数学的中的应用,可举例:快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)<=132 即可解出n=19。
    2023-07-29 08:12:381

    等差数列与等差数列前n项和公式是什么?

    等差数列前N项和公式:①Sn=n*a1+n(n-1)d/2②Sn=n(a1+an)/2Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。性质:⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).⑵在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1).⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).2. 等比数列前N项和公式:Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,q代表数列的公比。性质:①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;②在等比数列中,依次每 k项之和仍成等比数列;③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);⑤在等比数列中,首项a1与公比q都不为零.⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1⑦当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。
    2023-07-29 08:13:071

    如何计算等差数列前n项和?

    方法一:2+4+6+……+18+20=(2+20)+(4+18)+……+(10+12)=22*5=110方法二:等差数列前n项和:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。将其看作是一个等差数列:s=10*(2+20)/2=110。扩展资料:等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。参考资料:等差数列_百度百科
    2023-07-29 08:13:231

    等差数列前n项和公式性质

    等差数列前n项和公式性质:1、数列的前n项和S可以写成S=an^2+bn的形式(其中a、b为常数)。在等差数列中,S=a,S=b(n>m),则S=(a-b)。2、记等差数列的前n项和为S。若a>0,公差d<0,则当a≥0且an+1≤0时,S最大;若a<0,公差d>0,则当a≤0且an+1≥0时,S最小。等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
    2023-07-29 08:13:321

    等差等比数列前n项和公式

    1.等差数列前n项和公式 (1) Sn=n(a1+an)/2 (2) Sn=na1+n(n-1)d/2 2.等比数列前n项和公式 (1)当公比q=1时,Sn=na1 (2)当q不等于1时, Sn=a1(1-q^n)/(1-q)或 Sn=(a1-an*q)/(1-q)
    2023-07-29 08:13:421

    怎样证明等差数列前N项和公式?

    等差数列前N项和公式S=(A1+An)N/2 ,等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。注意: 以上整数。扩展资料日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n,则am+n=0。其于数学的中的应用,可举例:快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)<=132 即可解出n=19。
    2023-07-29 08:14:031

    求等差数列前n项和的方法

    求等差数列前n项和的方法: 1、用倒序相加法求数列的前n项和。 如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。 2、用公式法求数列的前n项和(等差数列公式求和公式:Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2)。 对等差数列,求前n项和Sn可直接用等差数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 3、用裂项相消法求数列的前n项和。 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 4、用构造法求数列的前n项和。 所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。
    2023-07-29 08:14:111

    等差数列前n项和公式

    等差数列前n项和公式是na1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列是常见数列的一种。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……1+2(n-1)。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:na1+n(n-1)d/2或Sn=n(a1+an)/2。以上n均属于正整数。等差数列公式的文字表示方法:等差数列基本公式:末项=首项+(项数-1)×公差。项数=(末项-首项)÷公差+1。首项=末项-(项数-1)×公差。和=(首项+末项)×项数÷2。差:首项+项数×(项数-1)×公差÷2。
    2023-07-29 08:14:181

    求等差数列前N项和的公式是什么

    等差数列前N项和的公式有两种,如下:1、知道首项a1和末项an的情况下,前N项和Sn=n(a1+an)/2。2、知道首项a1和公差d的情况下,前N项和Sn=na1+n(n-1)d/2。等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
    2023-07-29 08:14:341

    等差数列前n项和公式是什么?

    方法一:2+4+6+……+18+20=(2+20)+(4+18)+……+(10+12)=22*5=110方法二:等差数列前n项和:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。将其看作是一个等差数列:s=10*(2+20)/2=110。扩展资料:等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。参考资料:等差数列_百度百科
    2023-07-29 08:14:541

    等差数列前n项和的所有公式

    一、等差数列如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均属于正整数从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)=0。
    2023-07-29 08:15:021

    1、数列等差和的公式是什么?

    等差数列求和公式Sn=(a1+an)n/2;Sn=na1+n(n-1)d/2(d为公差);Sn=An2+Bn;A=d/2,B=a1-(d/2)。基本性质若m、n、p、q∈N①若m+n=p+q,则am+an=ap+aq②若m+n=2q,则am+an=2aq(等差中项)注意:上述公式中an表示等差数列的第n项。拓展资料等差数列推论(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。(4)其他推论:①和=(首项+末项)×项数÷2;②项数=(末项-首项)÷公差+1;③首项=2x和÷项数-末项或末项-公差×(项数-1);④末项=2x和÷项数-首项;⑤末项=首项+(项数-1)×公差;⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
    2023-07-29 08:15:191

    等差数列前N次项的和的公式

    a(n)=a1+(n-1)dSn=na1+n*(n-1)d/2等差数列前N项和公式S=(A1+An)N/2等差数列公式求和公式Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2希望我的回答对您有帮助
    2023-07-29 08:15:531

    证明等差数列,等比数列前n项和的公式

    下面用数学归纳法证明Sn=na1+n(n-1)d/2和Sn=[a1(1-qⁿ)]/(1-q)(一)等差数列前n项和公式Sn=na1+n(n-1)d/2证明:(1)n=1,S1=a1,成立(2)设Sk=ka1+k(k-1)d/2,则S(k+1)=Sk+a(k+1)=ka1+k(k-1)d/2+a1+kd=(k+1)a1+(k+1)kd/2所以n=k+1也成立。所以等差数列前n项和公式为Sn=na1+n(n-1)d/2。(二)等比数列前n项和公式Sn=[a1(1-qⁿ)]/(1-q)证明:(1)n=1,S1=a1成立(2)设Sk=[a1(1-q^k)]/(1-q)。S(k+1)=Sk+a(k+1)=a1(1-q^k)/(1-q)+a1q^k=[a1/(1-q)][1-q^k+q^k-q^(k+1)]=a1[1-q^(k+1)]/(1-q)所以n=k+1时公式仍成立。所以等比数列前n项和公式Sn=[a1(1-qⁿ)]/(1-q)。
    2023-07-29 08:16:171

    等差数列前n项和公式

    等差数列前n项和公式是na1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列是常见数列的一种。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……1+2(n-1)。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:na1+n(n-1)d/2或Sn=n(a1+an)/2。以上n均属于正整数。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。从通项公式可以看出,是n的一次函数(d≠0)或常数函数(d=0)。排在一条直线上,由前n项和公式知,是n的二次函数(d≠0)或一次函数;且常数项为0。等差数列基本公式:末项=首项+(项数-1)×公差。项数=(末项-首项)÷公差+1。首项=末项-(项数-1)×公差。和=(首项+末项)×项数÷2。差:首项+项数×(项数-1)×公差÷2。
    2023-07-29 08:16:391

    等差数列前n项和公式?

    s= na1+[n(n-1)*d/2s是和,a1是首相n是项数d是公差,
    2023-07-29 08:17:043

    等差数列和的公式?

    等差数列求和公式Sn=(a1+an)n/2;Sn=na1+n(n-1)d/2(d为公差);Sn=An2+Bn;A=d/2,B=a1-(d/2)。基本性质若m、n、p、q∈N①若m+n=p+q,则am+an=ap+aq②若m+n=2q,则am+an=2aq(等差中项)注意:上述公式中an表示等差数列的第n项。拓展资料等差数列推论(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。(4)其他推论:①和=(首项+末项)×项数÷2;②项数=(末项-首项)÷公差+1;③首项=2x和÷项数-末项或末项-公差×(项数-1);④末项=2x和÷项数-首项;⑤末项=首项+(项数-1)×公差;⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
    2023-07-29 08:17:101