汉邦问答 / 问答 / 问答详情

庞莱加猜想指的是什么?

2023-05-20 17:38:35
FinCloud

位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。

1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。

如果你认为这个说法太抽象的话,我们不妨做这样一个想像:

我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。

我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球型房子里。现在拿一个汽球来,带到这个球形的房子里。随便什么汽球都可以(其实对这个汽球是有要求的)。这个汽球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个汽球,我们还可以继续吹大它,而且假设汽球的皮特别结实,肯定不会被吹破。还要假设,这个汽球的皮是无限薄的。

好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。

看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学和逻辑推理。一个世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。2000年初美国克雷数学研究所的科学顾问委员会就把庞加莱猜想列为七个“千年大奖问题”之一, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。另外六个“千年大奖问题”分别是: NP 完全问题, 郝治 猜想(Hodge), 黎曼假设(Rieman ),杨-米尔斯 理论(Yang-Mills), 纳卫尔-斯托可方程(Navier-Stokes), BSD猜想(Birch and Swinnerton-Dyer)。

提出这个猜想后,庞加莱一度认为,自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。

20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特黑德(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。失之桑榆、收之东隅,但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。 30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn"s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。”然而,这位聪明的希腊拓扑学家,却折在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。

这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。

一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。

1966年菲尔茨奖得主斯梅尔(Smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。

10多年之后的1983年,美国数学家福里德曼(Freed man)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。

拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。

然而,庞加莱猜想,依然没有得到证明。人们在期待一个新的工具的出现。

“就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。”清华大学数学系主任文志英说。

可是,解决庞加莱猜想的工具在哪里?

工具有了。

理查德·汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“Playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。

1972年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。“那时候,汉密尔顿刚刚在做Ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。”丘成桐说,“于是,我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。”

Ricci流,以意大利数学家Gregorio Ricci命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究Ricci流。其中,就包括他的第一个来自中国大陆的学生曹怀东。

第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大T恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(Witten),坐在后排,俨然也是大隐隐于市的模样。

1982年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿“泡在一起”。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,今天关于庞加莱猜想的故事,是否会被改写?

在使用Ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了

庞加莱的猜想是什么 什么是庞加莱猜想

1、庞加莱猜想(Poincaré conjecture)是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的七个千禧年大奖难题。 2、庞加莱猜想中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识。 3、20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特海(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。但是失之东隅、收之桑榆,在这个过程中,他发现了三维流形的一些有趣的特例,这些特例被称为怀特海流形。30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。
2023-05-20 13:55:541

庞加莱的猜想是什么?

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点.另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的.我们说,苹果表面是“单连通的”,而轮胎面不是.大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题.这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗. 一位数学史家曾经如此形容1854年出生的亨利庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起.”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题.庞加莱猜想,就是其中的一个. 1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球.但1905年发现提法中有错误,并对之进行了修改,被推广为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面.”后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”. 如果你认为这个说法太抽象的话,我们不妨做这样一个想象: 我们想象这样一个房子,这个空间是一个球.或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子. 我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球形房子里.现在拿一个气球来,带到这个球形的房子里.随便什么气球都可以(其实对这个气球是有要求的).这个气球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求).但是这个气球,我们还可以继续吹大它,而且假设气球的皮特别结实,肯定不会被吹破.还要假设,这个气球的皮是无限薄的. 好,现在我们继续吹大这个汽球,一直吹.吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙. 我们还可以换一种方法想想:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点; 另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的. 为什么?因为,苹果表面是“单连通的”,而轮胎面不是. 看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学推理和逻辑推理.一个多世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终. 艰难的证明之路 2000年5月24日,美国克莱数学研究所的科学顾问委员会把庞加莱猜想列为七个“千禧难题”(又称世界七大数学难题)之一,这七道问题被研究所认为是“重要的经典问题,经许多年仍未解决.”克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励.另外六个“千年大奖问题”分别是: NP完全问题, 霍奇猜想(Hodge), 黎曼假设(Riemann),杨-米尔斯理论(Yang-Mills),纳维-斯托克斯方程(Navier-Stokes,简称NS方程),BSD猜想(Birch and Swinnerton-Dyer). 提出这个猜想后,庞加莱一度认为自己已经证明了它.但没过多久,证明中的错误就被暴露了出来.于是,拓扑学家们开始了证明它的努力. 早期的证明 20世纪30年代以前,庞加莱猜想的研究只有零星几项.但突然,英国数学家怀特海(Whitehead)对这个问题产生了浓厚兴趣.他一度声称自己完成了证明,但不久就撤回了论文,失之桑榆、收之东隅.但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特海流形. 30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中. 帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家.因为他的名字超长超难念,大家都称呼他“帕帕”(Papa).在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客.帕帕以证明了著名的“迪恩引理”(Dehn"s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力.” 然而,这位聪明的希腊拓扑学家,却最终倒在了庞加莱猜想的证明上.在普林斯顿大学流传着一个故事.直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言
2023-05-20 13:56:011

什么是庞加莱猜想

弄这个,没有什么意义呀
2023-05-20 13:56:104

庞加莱猜想应该怎么解释

庞加莱猜想的内容是:1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想,任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。解释:一个闭的三维流形就是一个有边界的三维空间,单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。后来,这个猜想被推广至三维以上空间,被称为高维庞加莱猜想。类比举例:如果伸缩围绕一个苹果表面的橡皮带,可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。因此说,苹果表面是单连通的,而轮胎面不是。
2023-05-20 13:56:311

谁能具体讲讲庞加莱猜想?

有个中国的数学家在前几个数学家的基础上完全解出来了呢
2023-05-20 13:56:395

庞加莱猜想是什么?

“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”
2023-05-20 13:56:533

庞加莱猜想

  1、庞加莱猜想是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的七个千禧年大奖难题。其中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对 流形性质的认识。2、1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想:“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”简单的说,一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。
2023-05-20 13:56:591

庞加莱猜想是什么

在1904年发表的一组论文中,庞加莱提出以下猜想:任一单连通的、封闭的三维流形与三维球面同胚。上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它不离开表面而又收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响。
2023-05-20 13:57:051

庞嘉莱猜想是什么,解决方法

分类: 教育/学业/考试 >> 学习帮助 解析: 这个庞加莱猜想是法国科学家庞加莱提出的,是一个代数拓扑学的猜想,不是教授级的人都很难证实。庞加莱猜想是这样的:每个单连通的闭的可定向的三维流形同胚于三维球面。这个猜想后来被推广,发展为:每个单连通的闭的n维流形,如果具有n维球S的贝蒂数和挠系数,它就同胚于S。你问我这是什么意思?对不起,我不能解释。说得通俗一点就是这样:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。庞加莱猜想于2006年6月3日被中国数学家宣布破解。破解难题的科学家是:佛大学教授、著名数学家、菲尔兹奖得主丘成桐、中山大学朱熹平教授和旅美数学家、清华大学 *** 教授曹怀东。至于为什么中山大学教授可以解开?因为他们有超人的智慧。
2023-05-20 13:57:121

庞加莱猜想到底是什么

拓扑学中主要用代数工具解决问题的分支。它的前身是组合拓扑,组合拓扑的奠基人是H.庞加莱,1895年他建立了单纯同调群即可三角剖分的空间(多面体)的同调群,引进了重要的拓扑不变量贝蒂数及挠系数。J.W.亚历山大在1915年证明了贝蒂数和挠系数是同胚不变量,单纯同调群是同胚不变量。同时庞加莱还引进了复形的基本群。1904年他给出了庞加莱猜想,即每个单连通的闭的可定向的三维流形同胚于三维球面,这个猜想后被推广为每个单连通的闭的n维流形,如果具有n维球S的贝蒂数和挠系数,它就同胚于S。庞加莱猜想尚未被证明。推广了的庞加莱猜想,对于n≥5的情形,为S.斯梅尔于1961年证明,对n=4的情形,为M.H.弗里德曼于1981年所证明。庞加莱是企图利用同调群和基本群对三维流形进行同胚分类,但亚历山大在1919年指出存在不同胚的三维流形,它们有同构的同调群和基本群。20世纪20年代S.莱夫谢茨和亚历山大发展了同调论,得到了霍普夫不变量,证明了莱夫谢茨不动点定理,亚历山大对偶定理。20世纪初引进了一般空间的同调群。1932年E.切赫上同调群产生。1944年S.艾伦伯格定义了奇异同调群且用艾伦伯格- 斯廷罗德公理把各种同调群统一起来,建立了同调理论。在同伦论方面W.赫维茨定义了同伦群。J.H.C.怀特赫德把研究对象推广到CW复形。1947年N.E.斯廷罗德在障碍理论中定义了斯廷罗德平方运算。1951年 J.-P.塞尔对纤维丛引进了谱序列,在同伦群的计算方面取得不少成就。此外纽结问题也进一步发展成为思维合痕和嵌入问题。
2023-05-20 13:57:313

庞加莱猜想应该怎么解释

不是中国人证明的,是格里戈里·佩雷尔曼(俄罗斯)证明的,拒绝领奖百万美金,他是淡泊名利的数学家。朱熹平,曹怀东之流让人恶心,完全是冲着名利去的,毫无贡献,仅仅是抄袭而已。
2023-05-20 13:57:393

庞加莱猜想刚刚被证明了,谁给点详细资料

一: P (多项式算法)问题对NP (非多项式算法)问题 二: 霍奇(Hodge)猜想 三: 庞加莱(Poincare)猜想 四: 黎曼(Riemann)假设 五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 这里罗列出来你可以去慢慢找,关于详细资料,知道里已经很多了.
2023-05-20 13:57:596

请问世界十大数学猜想之三的庞加莱猜想是由谁完成的?

在美、俄等国科学家的工作基础上,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东已经彻底证明庞加莱猜想满意请采纳
2023-05-20 13:59:181

庞加莱猜想是被哪个数学家证明的

是俄罗斯的数学家证实的,我国的两位只是查漏补缺而已,意思是俄罗斯数学家证实了大部分并给与了明确的方向,国内的两位在这个思路上补充了一点,这些世界数学难题,要完整的验证以及补充需要好多年,就像我们普通人高中做题时,思路最重要。我国也是自卑几百年了,科学界顶级的世界难题一个成果都没有,感觉国内教育制度问题太大,如数学经常能拿到奥赛,但是像菲尔兹等数学大奖国内就一个拿不到。感觉我们教育出来的学生就是会做题会考试,但是独立思考创新性问题就不行了。国内还是欠缺太多,就比如对世界科技贡献的学科排名国内连两百都排不到,问题一大堆,社会上对理论科学方面的投入也不够,太急功近利了投入的都是能快速产生收益的,就连电影电视方面亦是如此,看看美国导演能十多年拍一部电影。。。。国内各行各业都显得很急功近利
2023-05-20 13:59:241

庞加莱猜想的关于庞加莱

参见:亨利·庞加莱亨利·庞加莱(Henri Poincaré),法国数学家、天体力学家、数学物理学家、科学哲学家。1854年4月29日生于法国南锡,1912年7月17日卒于巴黎。他的成就不在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,只是其中的一个。一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”
2023-05-20 13:59:311

什么是庞加莱猜测?

克莱数学研究所征解的七个数学问题 (CMI Seven Millennium Prize Problems)二十一世纪到来之际,克莱数学研究所(The Clay Mathematics Institute of Cambridge, Massachusetts (CMI))参照一百多年前德国数学家大卫希尔伯特的做法,于2000年5月24日在法国召开的千禧年年会上,公开征解七个数学问题的解答。这七个问题是由克莱数学研究所的科学顾问委员会精心挑选的,克莱数学研究所的董事会为每一个问题的解决提供了一百万美元的奖金。这些问题是(按照问题题目的英文字母顺序排列)[7个问题的说明]1. 波奇和斯温纳顿-戴雅猜想(Birch and Swinnerton-Dyer Conjecture):对有理数域上的任一椭圆曲线, 其L函数在1的化零阶等于此曲线上有理点构成的Abel群的秩。2. 霍奇猜想(Hodge Conjecture):在非奇异复射影代数簇上, 任一霍奇类是代数闭链类的有理线性组合。3. 纳威厄-斯托克斯方程(Navier-Stokes Equations):证明或否定3-维奈维尔-斯托克斯方程解的存在性和光滑性(在合理的边界和初始条件下)。4. P与NP问题(P VS NP Problem):有确定性多项式时间算法的问题类P是否等于有非确定性多项式时间算法的问题类NP。5. 庞加莱猜想(Poincare Conjecture):任意闭单连通3-流型同胚于3-球。6. 黎曼假设(Riemann Hypothesis):黎曼Zeta-函数的非平凡零点的实部都是1/2。7. 杨-米尔理论(Yang-Mills Theory):证明量子Yang�Mills场存在并存在一个质量间隙。 庞加莱猜想  庞加莱(Poincare)猜想 : 庞加莱在1904年发表的一组论文中提出:任一单连通的、封闭的三维流形与三维球面同胚。  粗浅的比喻为:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。历史   庞加莱猜想由法国数学家亨利·庞加莱于1904年提出拓扑学难题。百年来无人能解。在庞加莱猜想提出後不久,就被推广到n≧4维的情况,这称为广义庞加莱猜想。1961年,美国数学家S.Smale采用十分巧妙的方法绕过三、四给的困难情况,证明了五维以上的庞加莱猜想。1981年另一位美国数学家M.Freedman证明了四维猜想,至此广义庞加莱猜想得到了证明。但时至今日,庞加莱猜想却依然故我。 在2002年,一位俄罗斯的数学家裴瑞曼(Grigori Perelman)提出的论文证明了此一猜想。  到了2006年6月3日哈佛大学教授、著名数学家、菲尔兹奖得主丘成桐在中国科学院晨兴数学研究中心宣布:在美、俄等国科学家的工作基础上,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东已经彻底证明庞加莱猜想
2023-05-20 13:59:441

未解之谜都是什么意思?

这七个难题的简单介绍如下:1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。6、Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。7、Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。20年过去,千禧年数学七大难题仍有六题未解2000年5月,由美国富豪出资建立的克莱数学研究所,精心挑选了7大未解数学难题,无论是数学家还是流浪汉,任何人只要解决其中一题,都可以领走100万美金。美国希望通过悬赏的方式高效解决问题,对数学家而言,无疑也是一次扬名立万的机会。这七道题也被称为“千禧年数学七大难题”。可如今20年过去了,七道难题还剩下六道未解。唯一已经被攻破的是曾经困扰人类近百年的“庞加莱猜想”。用大众化可以理解语言可以定义为:在一个三维空间中,假如每一条封闭的曲线都能收缩成一点,那么这个空间一定是一个三维的圆球。1904年,被誉为最后一个百科全书式的法国科学家庞加莱提出了这一猜想。庞加莱猜想”拓扑学的基础难题,如果破解了这个难题,人类对于宇宙和空间的认识将更上一个深度。
2023-05-20 13:59:511

庞加莱(Poincare)猜想,真的有人破解了?

国际数学界关注了上百年的重大难题——庞加莱猜想,终于被科学家完全破解。6月3日,哈佛大学教授、著名数学家、菲尔兹奖得主丘成桐在中国科学院晨兴数学研究中心宣布:在美、俄等国科学家的工作基础上,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东已经彻底证明庞加莱猜想。
2023-05-20 14:00:091

关于庞加莱猜想的问题

应该是拓扑同胚,如果是别的,会专门注明的,而拓扑同胚就简称同胚了,再说庞加莱猜想是一个纯粹拓扑学的问题,虽然研究过程中可能会用微分几何的知识(就像研究实数的数论却经常用复变函数的方法),因此同胚就是指拓扑中的同胚。
2023-05-20 14:00:271

庞加莱猜想被证明了吗?

21世纪人类发明的科技成就:火星发现有水、人类基因组序列图完成、细胞重新编程技术、证实宇宙暗物质存在、干细胞研究成果、人类探测器创最远纪录等。除此还有庞加莱猜想被证明,2006年6月3日,经过美国、俄罗斯和中国数学家30多年的共同努力,中山大学的朱熹平教授和美国里海大学教授及清华大学兼职教授曹怀东,最终证明了百年数学难题庞加莱猜想。
2023-05-20 14:00:331

庞加莱猜想高中老师会吗

不会。庞加莱猜想是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的七个千禧年大奖难题。该难题截止2022年11月23日,在全世界并没有人能作答出来,因此高中老师也是不会的。因世界上的优秀数学家非常多,但都没有作答出来。
2023-05-20 14:00:401

千禧年数学七大难题是哪些?

1,2,11,王,田
2023-05-20 14:00:472

求解答过程:庞加莱猜想是国际数学

(1)事物是变化发展的,发展的实质是事物的前进和上升,是新事物的产生和旧事物的灭亡。论文的发表宣告了这一世界难题的破解。(2)事物的发展是前进性和曲折性的统一。许多杰出的数学家致力于论证庞加莱猜想,但历经一百多年,都未给予一个令人信服的证明,这说明了事物发展的曲折性。中国的两位数学家最终破解这一难题,体现了人的认识是不断发展的,事物发展的前途是光明的。(3)事物的发展是量变与质变的统一,量变是质变的前提和必要准备,质变是量变的必然结果。正是一百多年中,众多的数学家在论证猜想过程中对正确思路和方法的不断积累,才有了这一猜想最终论证成功。
2023-05-20 14:01:051

究竟是谁破解庞加莱猜想?

分类: 理工学科 问题描述: 我对最近关于庞加莱猜想的新闻报道感到困惑:请在百度中分别搜索以下关键字:"庞加莱 中大"和"庞加莱 俄罗斯"后请告诉我是怎样一回事? 解析: 俄国数学家彼列尔曼 丘是个宝器 近来只会捣乱 不断口出狂言 在竟外大骂北京大学 还贬低陈景润 这次竟然又如此乱来 大家要警惕啊———————————————————————————— 再说“猴子的扳手”——从《科学时报》的一篇报道说起 bbs.te/viewthread.php?tid=134329 2006年8月2日,《科学时报》登出了题为《哥德巴赫猜想、庞加莱猜想和“猴子的扳手”》的时评(cas.acDir/2006/08/02/14/26/57),该文虽然被部分网站转载,不过却并没有引起太多的关注。笔者却从中发现若干值得注意的地方。 《科学时报》是何许媒体?2006年6月3日,该报纸以《中国数学家最终证明庞加莱猜想》为题发布了一个让国人振奋不已的消息:位列世界七大数学难题之一的庞加莱猜想最终被中国人证明,并引述国际著名数学大师丘成桐先生的话:“数学的大问题都是一步步解决的,中国人完成了最后一步,他们为这幢大厦封顶。中国人做出了这么好的工作,我为中国骄傲!”成为第一时间见证这一重大新闻事件的为数不多的媒体之一,接下来“封顶”一词遍布中国各大媒体。6月5 日, 《科学时报》专访丘成桐先生,这就是《丘成桐眼中的朱熹平、曹怀东》一文,该文也不忘补上一句:“只有像朱熹平、曹怀东这样的实干数学家多了,而老数学家不打压排挤他们,中国数学才有希望”。 日子才过去不到两个月,《科学时报》登出了截然相反的一篇评论。不妨看看其中的句子: “我吃惊不是这篇文章把解决庞加莱猜想的功劳一古脑地全归于俄国数学家Perelman,甚至把中国数学家的贡献排在其他外国数学家之后,也不是吃惊Milnor教授对中国学者工作的评语居然是:Throwing ‘a monkey wrench" into the question of who gets credit。我吃惊的是:偌大的中国媒体界,上上下下这么多的研究人员怎么会卷进这样的一场‘世界性"的争执,这种局面应该发生吗?这种事情对中国科学发展产生的是何种影响?这样下去,不管大家的主观愿望是如何的纯正无邪,可客观上数学研究是否也要被无奈地‘忽悠"起来?……中国数学家的工作居然成了争名夺利的‘捣蛋"了?” “学术问题不应由媒体影响力来解决;国家的声誉,即使可能性十分小,也不应被拖入学派甚至门第之争。近来网上数学界的论争几乎成了金庸武侠小说的 ‘数学"版,这对大家饭后娱乐或许有利,可对数学的健康发展难以产生正面的影响。有时善良的出发点、正确的观点,往往导致不良甚至错误的结果,这虽不是理性数学的逻辑,但却是人性数学的必然。任何有责任的学者对此应有更深更全面的思考。” “对数学的局外人而言,这场争论所引起的哥德巴赫猜想与庞加莱猜想谁更重要之话题,似乎是社会与科学认识上错位的结果而已。” …… 上面引述的三段话,几乎是针锋相对地回应两个月前的报道。如果这仅仅是一篇网络上发表的评论,那倒没什么。需要注意的是,《科学时报》是由中国科学院主办的,中国工程院、国家自然科学基金委员会共办的全国性大型科技类主流媒体(官方解释),也就是说《科学时报》是中科院下属的带有官方性质的媒体,而它的“科技时评”也可以类比为《人民日报》的社论。这样,我们可以去揣测:8月2日的报道给了我们什么信号呢? 首先的一个推论是:《科学时报》不惜自打耳光,也要澄清这件事情(这对于中国的官方媒体来说,是相当困难的一件事),只能说明:丘成桐的牛皮吹破了。Perelman是解决庞加莱猜想的主要人物,国际上早有公论,至此国内“皇帝的新衣”也到了点破的时候;杨院士所谓的中国人做出30%, Perelman只占25%,完全忽视佩氏杰出成就的行为也遭到了否定。 其次,我们可以进一步的考虑:从去年丘成桐先生掀起一场大风波开始,中国科学院就是作为丘的后盾出现的,特别是在国际数学中心竞争失败之后。而今,中国科学院放出这样的言论,是否表示中科院高层已经放弃了丘这个棋子? 事实上,在明确对庞加莱猜想的解决主要是Perelman做出来的这个前提之后,丘在今年所引导的这场事件就变成了一个闹剧,国外媒体将之称之为 “a monkey wrench”,在国际学术界上是一件很丢脸的事情。而中国诸媒体相信所谓权威的一面之辞,推波助澜,搞到现在不可收拾;如果是一般媒体倒也罢了,可是《科学时报》作为中国科学院的官方报纸,也出现这样的错误,就说不过去了。 据笔者了解,对世纪七大数学难题给出百万美元奖金的美国Clay数学研究所,在了解到Perelman给出的证明方法以后,交由两拨人马进行审查,其中一拨就是田刚和Man。这两组人马都已经做出了结果,Man-Tian的论文长达400多页,已经交给了Clay研究所,而且早于曹 -朱的论文发表。这两拨人马做出的结果都非常谨慎的交付审查,根据Clay研究所的说法,七大难题是否得到彻底解决,百万美元该奖励给谁,一个必要的条件是必须经过至少两年的同行审查。对于田刚来讲,做出这个结论不过是“帮帮忙”,对Perelman的证明方法做出解释,让学术界了解佩氏的成果是多么的重要,完全没有争功的念头;而曹-朱却在丘成桐先生的一手操纵下,在丘主编的杂志上抢先发表论文,审查时间不过几个月。凑巧的是,丘先生宣布庞加莱猜想被中国人“封顶”的时间,恰好是中国科学院院士大会举办之前,这仅仅是巧合? 而这一事件,在不明内情的普通民众心中,自然是中国科学界的大事,前有丘大师的权威说法,后有杨院士的贡献划分,再加上《科学时报》这样的主流媒体的推动,国人当然拍手称庆,网上的愤青们对于一些保持谨慎的言论则大加斥责,说是嫉妒。笔者所见一个blog上甚至有“朱熹平的成就超过了华罗庚、陈景润”的说法,未免可笑。 这场风波另一个不可收拾的局面是:丘先生为了表明曹-朱的成果是多么的重要,不惜对中国数学界神话般的人物陈景润先生加以否定,由此又掀起了一场大的争论。或许庞加莱猜想的重要性确实大于哥德巴赫猜想,但是对于中国科技界来说,陈景润先生代表了一个时代的精神;而且陈先生对于哥德巴赫猜想的成果达到了目前国际数学界的顶峰,而曹-朱的成果不过是“临门一脚”(或许“临门一脚”都算不上,球场上谁射进了球是要登上射手榜的)。如果说去年丘先生全盘否定北大数学科学学院院士还只是挑战了一所大学而已,那这次丘对于陈老先生的贬抑则严重挑动了国内数学界的情绪。 在国际上沦为笑柄,在国内又不得人心,这场(我姑且将之称为)“风波”是该到了结束的时候,丘先生以一个美籍华人数学家身份,让中国学术界沦为国际上的“a monkey wrench”,丘先生自然可以逍遥事外,中国学术界却是不可承受之重。中国科学院官方媒体来将之收场,也算给自己找了一个台阶下。 再说“猴子的扳手”——从《科学时报》的一篇报道说起(续) 回顾2005年的另一场丘先生挑起的风波,最后以教育部封杀BBS言论为终点。一份网络上流传的封杀令是这么说的:“一段时间以来, *** 相继报道国际数学界知名人士丘成桐先生批评北大田刚教授及北大教学质量的系列文章,引发国内外数学界以及广大网民的广泛争论,并影响到国内数学界的团结”,按照中国官方传统,这句话当是对这一事件的最后定性:盖棺定论就是丘先生“影响国内数学界团结”。丘先生接下来接受采访的时候声称以后回中国将持护照,免得被抓,将矛头直指中国 *** ;丘先生也明白,到此时批评北大已经没有意义,大势已去,至少在教育部系统已没有翻案的可能。 丘先生想借06年院士大会之机,咸鱼翻身,因而抢先让曹-朱发表论文(根据《丘成桐眼中的朱熹平、曹怀东》一文,曹-朱的论文是由丘先生全程指示的),并且在他以为又重获发言权的时候,再次炮制北大海归造假之言论,再次掀起轩然 *** 。殊不知两个月之后事情就到了不可收拾的地步,1962年菲尔兹奖得主Milnor教授将之斥为“破坏性地挑起了成果之争”,使得科学院不得不出面来为此收场。这篇评论的刊出,虽然没有点名,却实际上表明中国科学院宣告了与丘的分道扬镳。 再加上浙江大学校长换届,1978年后首位浙大外调校长、原国务院学位办公室主任、清华大学教授杨卫接替潘云鹤,杨卫校长是否还会秉持其前任全力支持丘的方针,则拭目以待。如果杨校长也放弃的话,则丘成桐先生在国内苦心经营的两大据点全部报废。 笔者并不否认曹-朱在庞加莱猜想上的成就,但是莫明其妙被丘当枪使就有点无辜了。丘先生一方面指责国内有老数学家打压年轻人,殊不知对年轻学者的捧杀,乃至使两位优秀的年轻数学家陷入“抢功”的丑闻之中,又该不该呢?
2023-05-20 14:01:121

庞加莱猜想

NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。
2023-05-20 14:01:181

镜面对称的庞加莱猜想

丘成桐一直相信Hamilton会解决庞加莱猜想,而他们是朋友。Grigory Perelman在2002年11月11日通过电子邮件告知丘、田、Hamilton等他在x 上发表了他的证明。Grigory Perelman说:“如果我错了,有人使用我的工作得到了一个正确的证明,我将很高兴。我从来没有认为我是猜想的唯一解答人。”田刚和Grigory Perelman是多年的好友,很兴奋可以理解。于是田刚邀请Grigory Perelman在2003年4月开始到MIT讲述他的证明。普林斯顿,加州石溪分校也纷纷发出邀请。Grigory Perelman痛快接受。Hamilton和丘成桐被Grigory Perelman的声明震惊。“我们觉得没人可以找到答案。”丘成桐在北京告诉我们说:“但是2002年Grigory Perelman发表了一个东西。他只是走了一个捷径,没有如我们的详细地证明。”Grigory Perelman对Hamilton的感激难以言表。从石溪追到哥伦比亚期望得到Hamilton的意见,可小心眼的Hamilton始终未发一言。为何?丘成桐在各种会议上一直坚持认为该证明可能有大的漏洞。现在看来这种说法与其说是科学的谨慎,不如说是嫉妒。在2004年丘成桐在美国自然科学基金申请到近一百万美元,用以研究和应用Grigory Perelman的“突破”。要知道问题解决意味着众多的数学家变得没有目标。田刚是受克莱所委托对Grigory Perelman证明进行评价的科学家之一。此项评价是为其一百万美元的悬赏的根据。丘成桐被排除在外。2004年9月,田刚认定Grigory Perelman的证明正确。
2023-05-20 14:01:251

庞加莱猜想完全证明过程

fdgdffsdrg
2023-05-20 14:02:572

为什么庞加莱猜想明明是贝雷尔曼证明出来的,国人为什么要说是朱禧明和曹怀东弄出来的?

____我仔细看过庞加莱猜想破解的经过,觉得楼主说得有理,作为中国人,我始终觉得朱禧明和曹怀东的成功被夸大了,感觉不对味儿! ____贝雷尔曼的确是个心地十分纯洁的数学天才,我很敬佩这样的人,就算在大街上碰到他,我最多顺便看他两眼,但我不会去打扰他!他是一个数学天使,只为数学而生,他是人类的最纯洁的好孩子! ____至于朱禧明和曹怀东的成就,我们当然不能否认,不管怎样,他们是我们中国的骄傲。至于头衔的给予只是相关机构的态度罢了,制度不可或缺,所以大家都不好处理这一头衔的安置,大家心里有数就行了! ____其实大多数数学上的巨大成就的突破,都不是 一人之功,那些站在数学顶峰的人们,反而觉得头衔、金钱、地位离他们遥远而无意义,和我们普通人认为高等数学离我们遥远而无意义一样! ____其实朱禧明和曹怀东还是很低调的,如果没有媒体,他们不会让太多人知道他们俩是干嘛的!这不是他们的错,咱们没有必要怪罪国人的人品这个层次上来了,有些事情,大家是身不由已的,或是实在不好处理才不得以而为之,再说了,这也不是什么丑事,事情经过明了啦,就行了,让数学家们安心工作吧!
2023-05-20 14:03:151

什么是庞加莱--霍普夫定理?

代数拓扑algebraic topology 拓扑学中主要用代数工具解决问题的分支。它的前身是组合拓扑,组合拓扑的奠基人是H.庞加莱,1895年他建立了单纯同调群即可三角剖分的空间(多面体)的同调群,引进了重要的拓扑不变量贝蒂数及挠系数。J.W.亚历山大在1915年证明了贝蒂数和挠系数是同胚不变量,单纯同调群是同胚不变量。同时庞加莱还引进了复形的基本群。1904年他给出了庞加莱猜想,即每个单连通的闭的可定向的三维流形同胚于三维球面,这个猜想后被推广为每个单连通的闭的n维流形,如果具有n维球S的贝蒂数和挠系数,它就同胚于S。庞加莱猜想尚未被证明。推广了的庞加莱猜想,对于n≥5的情形,为S.斯梅尔于1961年证明,对n=4的情形,为M.H.弗里德曼于1981年所证明。庞加莱是企图利用同调群和基本群对三维流形进行同胚分类,但亚历山大在1919年指出存在不同胚的三维流形,它们有同构的同调群和基本群。20世纪20年代S.莱夫谢茨和亚历山大发展了同调论,得到了霍普夫不变量,证明了莱夫谢茨不动点定理,亚历山大对偶定理。20世纪初引进了一般空间的同调群。1932年E.切赫上同调群产生。1944年S.艾伦伯格定义了奇异同调群且用艾伦伯格- 斯廷罗德公理把各种同调群统一起来,建立了同调理论。在同伦论方面W.赫维茨定义了同伦群。J.H.C.怀特赫德把研究对象推广到CW复形。1947年N.E.斯廷罗德在障碍理论中定义了斯廷罗德平方运算。1951年 J.-P.塞尔对纤维丛引进了谱序列,在同伦群的计算方面取得不少成就。此外纽结问题也进一步发展成为思维合痕和嵌入问题。
2023-05-20 14:03:221

表格中每行的文字都是循环出现的:第一行是“黎曼假设”4个汉字不断重复,第二行是“庞加莱猜想”5个汉字

因为“黎曼假设”4个汉字不断重复,200÷4=50(组)所以第200列的第一个汉字是:设;第二行是“庞加莱猜想”5个汉字不断重复,200÷5=40(组)所以200列的第二个汉字是:想;第三行则是“哥德巴赫猜想”6个汉字不断重复,200÷6=33(组)…2(个)所以200列的第三个汉字是:德答:第200列从上到下依次是:设,想,德3个汉字.
2023-05-20 14:03:311

关于庞加莱的故事:最后一位数学全才

  我们经常使用“智商”一词来衡量一个人的聪明程度,但恐怕很少有人能准确地说出这个词汇的真正内涵。也正因为人的智力的复杂性,要准确客观地测量人的智商不是一件容易的事,所以心理学家采用测量智商的通常方法,是大众普遍能够接受并认可的问卷测试,即设计一个问卷进行测验,其中设计的问题当然是运用智力才能回答的。   庞加莱:最后一位数学全才法国的心理学专家比奈和教育家西蒙于1905年设计出了一种风靡全球的测量智商的量表,但经这种表测验,被判定为“笨人”的,居然有一位的数学大师——被称为“数学百科全书”的庞加莱。   庞加莱1854年4月出生于法国,他的童年极为不幸,医术精湛的父亲并不能带给他健康。他自幼就患有一种奇怪的运动神经系统疾病,写字绘画都很困难。在5岁时,他又患上了严重的白喉病,致使他的语言能力发展缓慢,视力也受到严重损害。所幸的是,他有一个有才华有教养的母亲,使他从小受到良好的家庭教育,由此庞加莱的天资通过家庭教育和自我锻炼开始显露出来。上课时看不清老师的板书,无法记录,他就全神贯注地听讲,用心记在脑子里。下面的这则小故事就能充分体现这位传奇人物的学习特点:   1864年的秋天,在法国一所中学的一间教室里,当地一位小有名气的天文学家给学生们讲行星的运动过程。对天文学缺乏兴趣的学生们大都心不在焉,不是面无表情就是哈欠连天,这显然让吃力不讨好的老师有些恼火。这时,他再次发现后排的一个小个子男孩低着头始终没有注视过黑板,看起来在开小差,于是他大步流星走了过去。   “同学,你在干什么?怎么不看着黑板,难道你都听懂了吗?”老师很生气地问。   “我习惯用耳朵听,而且我听懂了,谢谢!”小个子男生站起来恭敬地回答。   “真的么?那请你讲给大家听听!”不怎么相信的老师有意刁难道。   “行星的运行……”小个子男生把老师刚才讲的内容完整地复述了一遍。   “天哪!你居然能过耳不忘,真是太了不起了!”老师瞠目结舌,觉得不可思议:“那你为什么不看黑板上的内容,这样理解起来更方便啊!”老师仍有些不解。   “老师,他眼睛严重近视,看不清黑板上的字。”旁边的同学赶忙解释道。   “哦,是这样。看起来上帝是公平的,你的聚精会神已经弥补了视力上的缺陷,你已经拥有了一双的‘内在之眼"!”   这个拥有超常记忆力的少年就是后来的数学大师庞加莱。由于视力上的障碍,庞加莱听课只能靠听和记忆,这就意味着他要付出比常人更多的努力和艰辛,但他同时收获的是大脑出奇地发达,尤其是理解能力和记忆能力超众。他对事物的记忆具有迅速、准确、持久的特点,而且他思索问题时思想高度集中,特别是数学方面,他可以在头脑里完成复杂的运算和推理。那种高度集中的注意力,不论外界干扰有多大,都不能使他的思维中断,而这些特征正是一个数学家所必须具备的。那时候,经常有高年级的学生考他数学题,结果庞加莱几乎都是瞬间给出答案,反而考他的人却需要花很长时间来验证他给出的解答,因此,他获得了一个“数学魔怪”的绰号。   1873年,19岁的庞加莱参加了巴黎综合工科学校的入学考试,那是一所以刻板的考试而闻名世界的学校。这时的庞加莱的数学才能已崭露头角,考官们为了试探一下他的能力,有意把考试时间推延了45分钟,他们用这段时间专门为他精心设计了几道数学难题,这个貌不惊人的年轻人没有动笔,在脑袋里就轻松地完成了运算,当他报出答案时,时间之短暂,方法之巧妙,令主考老师们在瞠目结舌之余欣喜若狂。尽管庞加莱的绘画能力很差,在几何作图题上得了零分,但惜才的主考官们经过激烈讨论,最终打破惯例,破格给出了第一名的成绩录取了他。   大学期间,庞加莱对数学更加痴迷,身体虚弱的他全身心地投入到美妙而神奇的数学海洋中。通过勤奋的思索钻研,1878年,他的一篇“异乎寻常”的关于微分方程一般解的论文,使得法兰西科学院的教授们惊叹不已,随后他被法国科学院授予数学博士学位。不久,他被卡恩大学聘为数学分析讲师,两年后他被巴黎大学聘为教授,讲授力学和实验物理学课程,从此开始了他作为职业数学家的科学生涯。   庞加莱反应机敏,擅长讨论,敏捷的思维犹如泉涌,撰写论文快似行云流水,几万字的学术论文可以在脑子里很快构思完成,书写出来无需修改一字。更为难得的是,他的研究和贡献涉及数学的各个分支,例如函数论、代数拓扑学、阿贝尔函数和代数几何学、数论、微分方程、数学基础等,当代数学研究的不少课题都可溯源于他的工作。20世纪以来,数学的发展日新月异,进入了多学科、高难度的现代阶段,一个杰出的数学家能精通一个或几个数学分支就已经非常了不起了,而能够通晓几乎所有数学领域的数学家更是凤毛麟角。当今数学家要想在数学的四个基本领域:算术、代数、几何和分析都做出庞加莱那样的第一流研究成果已经不太可能。从20世纪开始,数学界只承认“两个半”真正意义上的全能数学家,第一个就是庞加莱,另一个是冯·诺依曼,那半个指的是希尔伯特,可见庞加莱在数学界的崇高地位,所以称他是一位可以和19世纪数学高斯相媲美的数学大师毫不为过。事实上,庞加莱不仅在数学领域有着非凡贡献,而且在天体力学、物理学和科学哲学等领域也有杰出成就,所以被数学史权威评价为“对数学和它的应用具有全面知识的最后一个数学全才”。   庞加莱在物理学领域里开拓性的研究工作,可与居里夫人发现镭元素和爱因斯坦发现相对论相提并论;他成功地解决了像太阳、地球、月亮间相互运动这一类的三体问题,他是现代物理的两大支柱——相对论和量子力学的思想先驱;他研究科学哲学提出的“约定着重分析了人类理性认识”的基本法则,日益受到当代哲学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,这还不包括他作为一名自然科学哲学家而发表的一系列自然哲学名著。由于他的杰出贡献,他赢得了法国政府所能给予的一切荣誉,并获得过诸如英国、俄国、瑞典、匈牙利等国家的奖赏,相继被聘为30多个国家的科学院院士。   庞加莱于1904年给出了数学上最猜想之一——七大数学世纪难题之一的庞加莱猜想,这是拓扑学中的一个中心问题。任何一个封闭的,并能柔软延展的三维空间里面所有的封闭曲线如果都可以收缩成一点,则该空间一定能被吹涨成一个三维圆球。通俗地说,曲线是一维流形,曲面是二维流形,连成一片的几何图形称为连通(连通也还可细分)。庞加莱猜想:n+1维空间中一个光滑的、紧致的n-1连通的n维流形一定和n维球面同胚。所谓两个图形同胚,是指一个图形可以一对一地双方连续地变换为另一个图形。对于n=1,n=2的情形早就知道了。对一切n≥5,斯梅尔于1960年证明它是对的。1981年,弗里德曼证明n=4时也成立,但对n=3的情形至今未获解决。   庞加莱不仅才华横溢,而且努力勤奋。1911年,57岁的他感觉身体不适,精力减退,一生多病的庞加莱预感到属于自己的日子已经不多,不愿让脑海中孕育出的众多新思想和自己一同离去的他,开始废寝忘食地加紧研究的步伐。1912年6月26日,庞加莱在病逝前作了最后一次公开讲演,他发自肺腑地说道:“人生就是持续斗争。如果我们偶然享受到相对的宁静,那正是因为我们的先辈顽强斗争的结果。假使我们的精力,我们的警惕松懈片刻,我们就会失去先辈们为我们刻苦钻研的斗争成果。” 庞加莱是这样说,也是这样做的。1912年7月17日,庞加莱那不停思维的大脑因脑血管病的突然来临而永远停止了工作,但他作为在数学的所有领域都建树颇丰的数学大师而名垂青史。   庞加莱作为数学大师中的大师,数学界不折不扣的领军人物,他的智商显然不会是测试结论中的“愚笨”,甚至还恰恰相反。由此可见,人的智力是不能被一张表格绝对判定的,表格和数据并不能准确预见人的未来发展。庞加莱用他永不松懈不断进取的一生告诉我们一个事实:仅仅以智商来衡量一个人聪明与否、能力高低是片面的。一个人在某方面的欠缺,反而能极大地激发出其他方面的潜能。庞加莱正是这样的榜样!
2023-05-20 14:03:381

儒勒·昂利·庞加莱的介绍

儒勒·昂利·庞加莱(Jules Henri Poincaré,1854—1912年),法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是继高斯之后对于数学及其应用具有全面知识的最后一个人。他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出了庞加莱猜想,数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人并为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。
2023-05-20 14:03:451

谁有庞加莱(Poincare)猜想的证明全过程?

这篇论文长达328页,发表在美国出版的《亚洲数学期刊》6月号专刊上。题为《庞加莱猜想暨几何化猜想的完全证明:汉密尔顿-佩雷尔曼理论的应用》。我在网上查了没有找到。如果能先找到《亚洲数学期刊》的网站我想应该有。不过你真的对328页英文版的论文感兴趣吗?
2023-05-20 14:03:561

请问大家庞加莱猜想是证明了宇宙是球形吗?

物理学的球型一般都是中心有巨大引力,万物都受物质影响包括引力时间空间,如果是球型宇宙中心可能就是个超大引力场,可观测宇宙膨胀可能只是受到了中心影响的错觉,当然只是一种可能
2023-05-20 14:04:041

请问庞加莱猜想为什么看上去容易理解,却这么难证明?

这个的话,我不知道可以跟你怎么说,但是我给你举个例子给你说一下,就像是我们这些学数学的话,就是一个最简单的问题,也可以是十加十等于20这个的话,我们看上去都会解他,但是证明起来就很麻烦。
2023-05-20 14:04:101

亨利·庞加莱的研究方向

庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在函数论方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。庞加莱这一工作究竟给N体问题的解决以及动力系统的研究带来巨大而无比深刻的影响:第一,庞加莱证明了对于N体问题在N大于二时,不存在统一的第一积分(uniform first integral)。也就是说即使是一般的三体问题,也不可能通过发现各种不变量最终降低问题的自由度, 把问题化简成更简单可以解出来的问题,这打破了当时很多人希望找到三体问题一般的显式解的幻想。在一百年后学习微分方程课的人大多在第二个星期就从老师那里知道绝大多数微分方程是没法找到定量的解的,但一般都能从定性理论中了解更多解的性质,甚至可以通过计算机“看到”解的形状行为。而在庞加莱的年代,大多数数学家更热衷于用代数或幂函数方法找到解,使用定性方法和几何方法来讨论微分方程就是起源于庞加莱对于N体问题的研究,这彻底改变人们研究微分方程的基本想法。第二,为了研究N体问题,庞加莱发明了许多全新的数学工具。例如他完整地提出了不变积分(invariant integrals) 的概念,并且使用它证明了著名的回归定理(recurrence theorem)。另一个例子是他为了研究周期解的行为,引进了第一回归映象(first return map)的概念,在后来的动力系统理论中被称为庞加莱映象。还有象特征指数(characteristic expontents),解对参数的连续依赖性(continuous dependence of solutions with respect to parameters)等等。所有这些都成为了现代微分方程和动力系统理论中的基本概念。第三,庞加莱通过研究所谓的渐近解(asymptotic solutions),同宿轨道 (homoclinic orbits) 和异宿轨道(hetroclinic orbits),发现即使在简单的三体问题中,在这样的同宿轨道或者异宿轨道附近,方程的解的状况会非常复杂,以至于对于给定的初始条件,几乎是没有办法预测当时间趋于无穷时,这个轨道的最终命运。事实上半个世纪后,后来的数学家们发现这种现象在一般动力系统中是常见的,他们把它叫做稳定流形(stable manifold)和不稳定流形(unstable manifold)正态相交(intersects transversally)所引起的同宿纠缠(homoclinic tangle),而这种对于轨道的长时间行为的不确定性,数学家和物理学家称之为混沌(chaos)。庞加莱的发现可以说是混沌理论的开创者。庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。庞加莱对数学物理和偏微分方程也有贡献。他用括去法(sweepingout)证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。庞加莱对现代数学最重要的影响是创立组合拓扑学。1892年他发表了第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。庞加莱在数论和代数学方面的工作不多,但很有影响。他的《有理数域上的代数几何学》一书开创了丢番图方程的有理解的研究。他定义了曲线的秩数,成为丢番图几何的重要研究对象。他在代数学中引进群代数并证明其分解定理。第一次引进代数中的左理想和右理想的概念。证明了李代数第三基本定理及坎贝尔—豪斯多夫公式。还引进李代数的包络代数,并对其基加以描述,证明了庞加莱—伯克霍夫—维特定理。庞加莱对经典物理学有深入而广泛的研究,对狭义相对论的创立有贡献。早于爱因斯坦,庞加莱在1897年发表了一篇文章“The Relativity of Space”〈空间的相对性〉,其中已有狭义相对论的影子。1898年,庞加莱又发表《时间的测量》一文,提出了光速不变性假设。1902年,庞加莱阐明了相对性原理。1904年,庞加莱将洛伦兹给出的两个惯性参照系之间的坐标变换关系命名为‘洛伦兹变换"。再后来,1905年6月,庞加莱先于爱因斯坦发表了相关论文:《论电子动力学》。 他从1899年开始研究电子理论,首先认识到洛伦茨变换构成群(1904年),第二年爱因斯坦在创立狭义相对论的论文中也得出相同结果。庞加莱的哲学著作《科学与假设》、《科学的价值》、《科学与方法》也有着重大的影响。他是约定主义哲学的代表人物,认为科学公理是方便的定义或约定,可以在一切可能的约定中进行选择,但需以实验事实为依据,避开一切矛盾。在数学上,他不同意罗素、希尔伯特的观点,反对无穷集合的概念,赞成潜在的无穷,认为数学最基本的直观概念是自然数,反对把自然数归结为集合论。这使他成为直觉主义的先驱者之一。1905年,匈牙利科学院颁发一项奖金为10000金克朗的鲍尔约奖。这个奖是要奖给在过去25年为数学发展做出过最大贡献的数学家。由于庞加莱从1879年就开始从事数学研究,并在数学的几乎整个领域都做出了杰出贡献,因而此项奖又非他莫属。
2023-05-20 14:04:181

庞加莱猜想是什么?

庞加莱猜想: 一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。 1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。 如果你认为这个说法太抽象的话,我们不妨做这样一个想像: 我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。 我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球型房子里。现在拿一个汽球来,带到这个球形的房子里。随便什么汽球都可以(其实对这个汽球是有要求的)。这个汽球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个汽球,我们还可以继续吹大它,而且假设汽球的皮特别结实,肯定不会被吹破。还要假设,这个汽球的皮是无限薄的。 好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。 看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学和逻辑推理。一个世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。2000年初美国克雷数学研究所的科学顾问委员会就把庞加莱猜想列为七个“千年大奖问题”之一, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。另外六个“千年大奖问题”分别是: NP 完全问题, 郝治 猜想(Hodge), 黎曼假设(Rieman ),杨-米尔斯 理论(Yang-Mills), 纳卫尔-斯托可方程(Navier-Stokes), BSD猜想(Birch and Swinnerton-Dyer)。 提出这个猜想后,庞加莱一度认为,自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。 20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特黑德(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。失之桑榆、收之东隅,但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。 30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn"s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。”然而,这位聪明的希腊拓扑学家,却折在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。 这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。 一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。 1966年菲尔茨奖得主斯梅尔(Smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。 10多年之后的1983年,美国数学家福里德曼(Freed man)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。 拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。 然而,庞加莱猜想,依然没有得到证明。人们在期待一个新的工具的出现。 “就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。”清华大学数学系主任文志英说。 可是,解决庞加莱猜想的工具在哪里? 工具有了。 理查德·汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“Playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。 1972年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。“那时候,汉密尔顿刚刚在做Ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。”丘成桐说,“于是,我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。” Ricci流,以意大利数学家Gregorio Ricci命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究Ricci流。其中,就包括他的第一个来自中国大陆的学生曹怀东。 第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大T恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(Witten),坐在后排,俨然也是大隐隐于市的模样。 1982年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿“泡在一起”。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,今天关于庞加莱猜想的故事,是否会被改写? 在使用Ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了。
2023-05-20 14:04:431

庞加莱猜想

庞加莱猜想: 一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。如果你认为这个说法太抽象的话,我们不妨做这样一个想像:我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球型房子里。现在拿一个汽球来,带到这个球形的房子里。随便什么汽球都可以(其实对这个汽球是有要求的)。这个汽球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个汽球,我们还可以继续吹大它,而且假设汽球的皮特别结实,肯定不会被吹破。还要假设,这个汽球的皮是无限薄的。好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学和逻辑推理。一个世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。2000年初美国克雷数学研究所的科学顾问委员会就把庞加莱猜想列为七个“千年大奖问题”之一, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。另外六个“千年大奖问题”分别是: NP 完全问题, 郝治 猜想(Hodge), 黎曼假设(Rieman ),杨-米尔斯 理论(Yang-Mills), 纳卫尔-斯托可方程(Navier-Stokes), BSD猜想(Birch and Swinnerton-Dyer)。提出这个猜想后,庞加莱一度认为,自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。 20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特黑德(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。失之桑榆、收之东隅,但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。 30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn"s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。”然而,这位聪明的希腊拓扑学家,却折在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。 这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。 一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。 1966年菲尔茨奖得主斯梅尔(Smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。 10多年之后的1983年,美国数学家福里德曼(Freed man)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。 然而,庞加莱猜想,依然没有得到证明。人们在期待一个新的工具的出现。 “就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。”清华大学数学系主任文志英说。 可是,解决庞加莱猜想的工具在哪里? 工具有了。 理查德·汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“Playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。 1972年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。“那时候,汉密尔顿刚刚在做Ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。”丘成桐说,“于是,我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。” Ricci流,以意大利数学家Gregorio Ricci命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究Ricci流。其中,就包括他的第一个来自中国大陆的学生曹怀东。 第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大T恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(Witten),坐在后排,俨然也是大隐隐于市的模样。 1982年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿“泡在一起”。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,今天关于庞加莱猜想的故事,是否会被改写? 在使用Ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了。
2023-05-20 14:04:502

庞加莱的猜想是什么

1、庞加莱猜想(Poincaréconjecture)是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的七个千禧年大奖难题。2、庞加莱猜想中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识。3、20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特海(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。但是失之东隅、收之桑榆,在这个过程中,他发现了三维流形的一些有趣的特例,这些特例被称为怀特海流形。30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。
2023-05-20 14:04:571

庞加莱猜想应该怎么解释

不是中国人证明的,是格里戈里·佩雷尔曼(俄罗斯)证明的,拒绝领奖百万美金,他是淡泊名利的数学家。朱熹平,曹怀东之流让人恶心,完全是冲着名利去的,毫无贡献,仅仅是抄袭而已。
2023-05-20 14:05:043

什么是庞加莱猜想?

庞加莱是法国数学家,1854年4月29日生于南锡,1912年7月17日卒于巴黎。 庞加莱的父母亲都出身于法国的显赫世家,几代人都居住在法国东部的洛林。庞加莱从小就显出超常的智力,他智力的重要来源之一是遗传。他的双亲智力都很高,他的双亲又可追溯到他的祖父。他的祖父曾在拿破仑政权下的圣康坦部队医院供职,1817年在鲁昂定居,先后生下两个儿子,大儿子莱昂·庞加莱即为庞加莱的父亲。 庞加莱的父亲是当地一位著名医生,并任南锡大学医学院教授。他的母亲是一位善良、才华出众、很有教养的女性,一生的心血全部倾注到教育和照料孩子身上。庞加莱叔叔的两个儿子是法国政界的著名人物:雷蒙·庞加莱于1913至1920年间任法国总统;吕西·庞加莱曾任法国民众教育与美术部长,负责中等教育工作。 庞加莱的童年主要接受母亲的教育。他的超常智力使他成为早熟的儿童,不仅接受知识极为迅速,而且口才也很流利。但不幸的事发生了:五岁时患了一场白喉病、九个月后喉头坏了,致使他的思想不能顺利用口头表达出来,并成为一位体弱多病的入。尽管如此,庞加莱还是乐意玩耍游戏,喜欢跳舞。当然,剧烈的运动他是无法进行。 庞加莱特别爱好读书,读书的速度快得惊人,而且能对读过的内容迅速、准确、持久地记住。他甚至能讲出书中某件事是在第几页第几行中讲述的!庞加莱还对博物学发生过特殊的兴趣,《大洪水前的地球》一书据说给他留下了终身不忘的印象。他对自然史的兴趣也很浓,历史、地理的成绩也很优异。他在儿童时代还显露了文学才华,有的作文被老师誉为“杰作”。 庞加莱l862年进入南锡中学读书。初进校时虽然他的各科学习成绩十分优异,但并没有对数学产生特殊的兴趣。对数学的特殊兴趣大约开始于15岁,并很快就显露了非凡才能。从此,他习惯于一边散步,一边解数学难题。这种习惯一直保持终身。 1870年7月19日爆发的普法战争使得庞加莱不得不中断学业。法国被战败了,法国的许多城乡被德军洗劫一空并被德军占领。为了了解时局,他很快学会了德文。他通过亲眼看到的德军的暴行,使他成了一个炽热的爱国者。 1871年3月18日,巴黎无产者举行了武装起义,普法的反动派又很快联合起来扑灭了革命烈火,庞加莱又继续上学了。1872年庞加莱两次荣获法国公立中学生数学竞赛头等奖,从而使他于1873年被高等二科学校作第一名录取。据说,在南锡中学读书时,他的老师就誉称他为“数学巨人”。高等工科学校为了测试他的数学才能还特意设计了一套“漂亮的问题”,一方面要考出他的数学天才;另一方面也为了避免40年前伽罗瓦的教训重演。 1875年~1878年,庞加莱在高等工科学校毕业后,又在国立高等矿业学校学习工程,准备当一名工程师。但他却缺少这方面的勇气,且与他的兴趣不符。 1879年8月1日,庞加莱撰写了关于微分方程方面的博士论文,获得了博士学位。然后到卡昂大学理学院任讲师,1881年任巴黎大学教授,直到去世。这样,庞加莱一生的科学事业就和巴黎大学紧紧地联在一起了。 庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在分析学方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。 1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。 庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。 1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。 庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。 庞加莱对数学物理和偏微分方程也有贡献。他用括去法证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。 庞加莱对现代数学最重要的影响是创立组合拓扑学。1892年他发表勒第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关连系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。 庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。 庞加莱在数论和代数学方面的工作不多,但很有影响。他的《有理数域上的代数几何学》一书开创了丢番图方程的有理解的研究。他定义了曲线的秩数,成为丢番图几何的重要研究对象。他在代数学中引进群代数并证明其分解定理。第一次引进代数中的左理想和右理想的概念。证明了李代数第三基本定理及坎贝尔—豪斯多夫公式。还引进李代数的包络代数,并对其基加以描述,证明了庞加莱—伯克霍夫—维特定理。 庞加莱对经典物理学有深入而广泛的研究,对狭义相对论的创立有贡献。他从1899年开始研究电子理论,首先认识到洛伦茨变换构成群。 庞加莱的哲学著作《科学与假设》、《科学的价值》、《科学与方法》也有着重大的影响。他是约定主义的代表人物,认为科学公理是方便的定义或约定,可以在一切可能的约定中进行选择,但需以实验事实为依据,避开一切矛盾。在数学上,他不同意罗素、希尔伯特的观点,反对无穷集合的概念,赞成潜在的无穷,认为数学最基本的直观概念是自然数,反对把自然数归结为集合论。这使他成为直觉主义的先驱者之一。 1905年,匈牙利科学院颁发一项奖金为l0000金克朗的鲍尔约奖。这个奖是要奖给在过去25年为数学发展作出过最大贡献的数学家。由于庞加莱从1879年就开始从事数学研究,并在数学的几乎整个领域都作出了杰出贡献,因而此项奖又非他莫属。 1906年,庞加莱当选为巴黎科学院主席;1908年,他被选为法国科学院院士,这是一位法国科学家所能达到的最高地位。1908年庞加莱因前列腺增大而未能前往罗马,虽经意大利外科医生作了手术,使他能继续如前一样精力充沛地工作,但好景不长。 1912年春天,庞加莱再次病倒了,7月9日作了第二次手术;7月l7日在穿衣服时,突然因血栓梗塞,在巴黎逝世,终年仅58岁! 庞加莱被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。 罗素认为,本世纪初法兰西最伟大的人物就是昂利·庞加莱。阿达马这位曾在函数论、数论、微分方程、泛函分析、微分几何、集合论、数学基础等领域作出过杰出贡献的法国数学家认为,庞加莱“整个地改变了数学科学的状况,在一切方向上打开了新的道路。”
2023-05-20 14:05:222

庞加莱猜想应该怎么解释

庞加莱猜想的内容是:1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想,任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。 解释:一个闭的三维流形就是一个有边界的三维空间,单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。后来,这个猜想被推广至三维以上空间,被称为高维庞加莱猜想。 类比举例:如果伸缩围绕一个苹果表面的橡皮带,可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。因此说,苹果表面是单连通的,而轮胎面不是。
2023-05-20 14:05:291

什么是庞加莱猜想

http://zhidao.baidu.com/question/11880851.html?si=3
2023-05-20 14:05:372

庞加莱猜想

1、庞加莱猜想是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的七个千禧年大奖难题。其中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。庞加莱猜想是一个拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对 流形性质的认识。2、1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想:“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”简单的说,一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。
2023-05-20 14:05:431

什么是庞加莱猜想

分类: 教育/科学 >> 科学技术 解析: 法国人庞加莱(HenriPoincaré)被称为“最后一位数学全才”,在他留下的巨大科学遗产中,有一个属于代数拓扑学中带有基本意义的命题,这就是困扰了数学家整整一个世纪的“庞加莱猜想”。 庞加莱是在1904年发表的一组论文中提出这一猜想的:“单连通的三维闭流形同胚于三维球面。”它后来被推广为:“任何与n维球面同伦的n维闭流形必定同胚于n维球面。”我们不妨借助二维的例子做一个粗浅的比喻:一个无孔的橡胶膜相当于拓扑学中的二维闭曲面,而一个吹涨的气球则可以视为二维球面,二者之间的点存在着一一对应的关系,同时橡胶膜上相邻的点仍是吹涨气球上相邻的点,反之亦然。
2023-05-20 14:05:511

介绍一下庞加莱猜想

1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。提出这个猜想后,庞加莱一度认为,自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。 20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特黑德(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文。失之桑榆、收之东隅的是,在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。 50年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn"s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰·米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。”然而,这位聪明的希腊拓扑学家,却折在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。 这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。 一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。 1966年菲尔茨奖得主斯梅尔(Smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维和五维以上的证明,立时引起轰动。 10多年之后的1983年,美国数学家福里德曼(Freed man)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(Thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。 然而,庞加莱猜想,依然没有得到证明。 人们在期待一个新的工具的出现。 “就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。”清华大学数学系主任文志英说。 可是,解决庞加莱猜想的工具在哪里? 工具有了 里查德·汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“Playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。 1972年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。“那时候,汉密尔顿刚刚在做Ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。”丘成桐说,“于是,我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。” Ricci流,以意大利数学家Gregorio Ricci命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究Ricci流。其中,就包括他的第一个来自中国大陆的学生曹怀东。 第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大T恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(Witten),坐在后排,俨然也是大隐隐于市的模样。 1982年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿“泡在一起”。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,今天关于庞加莱猜想的故事,是否会被改写? 在使用Ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了。
2023-05-20 14:05:593

世界千年七大难题之一的“庞加莱猜想”是什么?

庞加莱猜想 令人头疼的世纪难题: 一位数学史家曾经如此形容1854年出生的亨利庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。 1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现提法中有错误,并对之进行了修改,被推广为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。 如果你认为这个说法太抽象的话,我们不妨做这样一个想象: 我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。 我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球形房子里。现在拿一个气球来,带到这个球形的房子里。随便什么气球都可以(其实对这个气球是有要求的)。这个气球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个气球,我们还可以继续吹大它,而且假设气球的皮特别结实,肯定不会被吹破。还要假设,这个气球的皮是无限薄的。 好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。 我们还可以换一种方法想想:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点; 另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。 为什么?因为,苹果表面是“单连通的”,而轮胎面不是。 看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学推理和逻辑推理。一个多世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。
2023-05-20 14:06:171

庞加莱的猜想是什么?有没有简单而详细的回答?

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 一位数学史家曾经如此形容1854年出生的亨利庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。 1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现提法中有错误,并对之进行了修改,被推广为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。 如果你认为这个说法太抽象的话,我们不妨做这样一个想象: 我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。 我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球形房子里。现在拿一个气球来,带到这个球形的房子里。随便什么气球都可以(其实对这个气球是有要求的)。这个气球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个气球,我们还可以继续吹大它,而且假设气球的皮特别结实,肯定不会被吹破。还要假设,这个气球的皮是无限薄的。 好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。 我们还可以换一种方法想想:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点; 另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。 为什么?因为,苹果表面是“单连通的”,而轮胎面不是。 看起来这是不是很容易想清楚?但数学可不是“随便想想”就能证明一个猜想的,这需要严密的数学推理和逻辑推理。一个多世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。 艰难的证明之路 2000年5月24日,美国克莱数学研究所的科学顾问委员会把庞加莱猜想列为七个“千禧难题”(又称世界七大数学难题)之一,这七道问题被研究所认为是“重要的经典问题,经许多年仍未解决。”克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。另外六个“千年大奖问题”分别是: NP完全问题, 霍奇猜想(Hodge), 黎曼假设(Riemann),杨-米尔斯理论(Yang-Mills),纳维-斯托克斯方程(Navier-Stokes,简称NS方程),BSD猜想(Birch and Swinnerton-Dyer)。 提出这个猜想后,庞加莱一度认为自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。 早期的证明 20世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特海(Whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文,失之桑榆、收之东隅。但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特海流形。 30年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。 帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他“帕帕”(Papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的“迪恩引理”(Dehn"s Lemma)而闻名于世,喜好舞文弄墨的数学家约翰米尔诺(John Milnor)曾经为此写下一段打油诗:“无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。” 然而,这位聪明的希腊拓扑学家,却最终倒在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言
2023-05-20 14:06:241

庞加莱猜想的陈述

1904年,法国数学家亨利·庞加莱在提出了一个拓扑学的猜想:“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”简单的说,一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。
2023-05-20 14:06:321

什么是庞加莱猜想啊

任何一个封闭的三维空间,只要它里面所有封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球——这就是法国数学家庞加莱于1904年提出的猜想。
2023-05-20 14:06:477