- 苏萦
-
这个解释起来其实要数学和物理很好 不知道你要详细到什么地步的 所以……
(以下内容摘自网络)PS.如果满意请采纳~谢谢~~ :)
DNA为什么是双螺旋结构
(撰文:夏烆光)
内容提要:本文从力学的角度出发阐明:蛋白质分子为什么是螺旋式的结构?DNA为什么是双螺旋结构?核苷酸分子为什么只能有四种类型?以及它们的自我复制功能为什么是唯一的?反过来,从蛋白质分子和DNA分子的螺旋状结构中证明,微观粒子存在着螺旋式前进的运动规律.进而,证明广义时空相对论所给出的理论结果本身的正确性.
一 引 言
1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”.从此,基因便被看作是生物性状的决定者,或者说,被看成是生物遗传变异结构和功能的基本单位.1926年,美国遗传学家摩尔根发表了著名的《基因论》.他和其他学者用大量的实验证明,基因是组成“染色体”的“遗传单位”.基因在染色体上占有一定的位置和空间,并呈现为直线排列.这样一来,就使孟德尔关于“遗传因子”的假说,体现到具体的遗传物质——基因这一概念上.这个结论,为后来进一步研究基因的结构和功能奠定了最初的理论基础.尽管情况如此,但当时的人们并不知道“基因”究竟是一种什么样的物质.直到上个世纪40年代,当生物科学工作者弄清楚了“核酸”,特别是脱氧核糖核酸(简称DNA),乃是一切生物传宗接代的遗传物质时,“基因”这一概念才有了确切的生物学内涵.其间,1951年科学家们在实验室里获得了DNA的结晶体;1952年又获得了DNA的X射线衍射图谱.在此基础上,于1953年,年仅25岁的美国科学家詹姆斯?沃森与37岁的英国科学家西斯?克里克共同阐明了这个划时代的学术成果,——他们从DNA(脱氧核糖核酸)的X射线衍射图上解读了它的“双螺旋结构”.DNA双螺旋结构的发现,开创了分子生物学的新时代,它使生物大分子的研究跨入了一个崭新的研究阶段,并使遗传学的研究深入到了分子层次,从而迈出了解开“生命之谜”的重要一步.
应该承认,当时的两项科学成就对DNA“双螺旋结构”的发现起到了至关重要的作用.一是,美国加州大学森格尔教授发现了蛋白质分子的螺旋状结构;二是,X射线衍射技术在生物大分子结构研究中得到了实际的应用,从而有了观测分子内部结构的实验手段.正是在这样的科学背景和研究条件下,才促使沃森来到英国剑桥大学与克里克合作,致力于研究DNA的结构模式.他们通过对大量X射线衍射实验结果的分析与研究,提出了DNA的双螺旋结构模型.这项研究成果发表在1953年4月25日英国的《发现》杂志上.在随后的日子里,科学家们便围绕着DNA的结构和作用,陆续地展开了进一步的研究工作,取得了一系列的重大进展,并于1961年终于成功地破译了“遗传密码”,以雄辩的实验依据证实了DNA双螺旋结构这个结论的正确性.沃林、克里克、威尔金斯等三人,因此而共同分享了1962年诺贝尔医学生理学奖.(参见[1])
二 核苷酸只有四种结构模型
基因(DNA)是自然界唯一能够自我复制的生物分子.正是由于DNA的这种精细准确的自我复制功能,为生物体将其祖先的生物特性传递给下一代提供了保证.现代生物学研究已经清楚地证明,NDA是由大量“核苷酸分子”组成的生物“大分子”.核苷酸分子有四种类型,它们按着不同的顺序排列,构成了含有各种遗传信息的生物基因(DNA).基因是包含着特定遗传信息的脱氧核糖核酸片段.
实验证明,“大肠杆菌”是一个品系繁多的大家族,其中有成千上万种不同的类型.生物学的研究发现,一些品系的大肠杆菌,本身缺少指导合成某些特殊营养物质的基因,因此,它们必须从培养基中直接摄取营养物质才能生活,——这样的大肠杆菌,被生物学称之作“营养缺陷型”.例如,大肠杆菌K不能合成苏氨酸(T)和亮氨酸(L);而它的另一个品系则不具备合成生物素(B)和甲硫氨(M)的能力.实验表明,如果把这两种大肠杆菌中的任何一种单独放在缺少T、L、B、M的培养基上都不能生长.但是,当我们把这两种品系的大肠杆菌混合在一起,然后放到缺少TLBM这四种物质的培养基上,却奇迹般地长出了新菌落.这是为什么呢?简单地说:就是因为在大肠杆菌K的DNA中,缺少T、L两种基因,而只含有B和M两种另外的基因;同样,在另一个品系大肠杆菌的DNA中,虽然不具备B和M基因,但却含有前者所缺少的T、L两种基因.把这两种营养缺陷型的大肠杆菌放在一起,就等于把四种基因放在一起来进行培养.这样一来,前一品系细胞中的DNA,就有可能通过细胞膜进入后一品系的细胞中,使两种类型的DNA之间进行基因重组,从而形成含有T、L、B、M四种基因的新型大肠杆菌.
我们说,生物学的这一重大发现,仅仅证明DNA本身具有双螺旋结构,但是,这里并没有指出,形成这种双螺旋结构的物理原因是什么.作为深入的学术研究,完全有必要弄清以下问题:1、蛋白质分子为什么是螺旋状的结构?2、DNA分子为什么是双螺旋式的结构?3、核苷酸分子为什么只有四种类型?4、由核苷酸分子所构成的DNA分子,能够唯一自我复制生物分子的原因是什么?而本文将从力学的角度上,探索并尝试地回答这些新问题.
三 蛋白质分子为什么是螺旋结构
这里,我们先来回答:蛋白质分子为什么是螺旋状的结构?为了回答这个问题,必须先来简单地介绍一下微观粒子的运动特征.根据《广义时空相对论》的理论结果知道,微观粒子的运动规律是:在不停“自旋”的同时,又绕着某个轴线、以一定的旋转频率和旋转半径不停地“公转”.加上粒子本身的直线运动,就自然地构成了一种螺旋式的前进运动.这里虽不是在讨论理论物理问题,但为使大家对这个结论确信无疑,还是需要简单地介绍一点广义时空相对论的相关理论.
诚如所知,在广义时空相对论中(参见[2],§21),我曾经指出:若曲线M(t)是给定参数t的方程,利用基本矢量τ,μ来表达二阶导数d2M/dt2,并注意到,如果参数t代表着时间,则二阶导数d2M/dt2就是M点运动的“相对加速度”.把等式
dM/dt =τds/dt (1)
对参数t微分,就得出:
d2M/dt2 =τd2s/dt2+(dτ/dt)·(ds/dt) (2)
按照复合函数的微分法则,则有:
dτ/dt =(dτ/ds)·(ds/dt)
再将
dτ/ds = kμ (3)
代入等式(2)中,便可以得出:
d2M/dt2 =τd2s/dt2+μk(ds/dt)*2 (4)
由此可见,相对加速度d2M/dt2可分成两项:一个是切向加速度矢量;另一个是法向加速度矢量.
下面,我们用运动时钟的读数t*来替换方程(4).为此,需要把曲线的特别参数s写成如下的函数关系:s = s(t*).这里,我们约定:一阶导数s"(t*)是站在动点M上的观测者,用运动时钟所得出地关于动点M的绝对速度.这个绝对速度可以是常数,——对应着没有外力作用的保守体系;也可以是时间坐标t*的函数,——对应着外力作用引起的绝对速度的变化.同时,我们还要约定:运动是匀加速的.由此而来,把上式对运动系的时间坐标t* 微分两次,便可以得出:
ds = s"(t*)dt* (5)
以及,
d2s =[s"(t*)dt*]"dt*=s""(t*)dt*2 (6)
令绝对速度
υ= s"(t*)
以及绝对加速度
η= s""(t*)
于是,便可以得出:
ds =υdt*;
以及,
d2s =ηdt*2 (7)
由于这里是“纯量”之间的微分运算,所以不必考虑绝对速度和绝对加速度的方向.再者,由于这里只限于讨论“绝对加速度”为常数时的情况,因此,我们将(5)和(7)式同时代入(4)式,便可以得出:
d2M/dt2 =(ηdt*2/dt2)τ+ k(υdt*/dt)2μ (8)
不难看出,上式等号右边的第一项代表了动点M的切向加速度,而第二项代表了它的法向加速度.等式左边的二阶导数d2M/dt2则是静止观测者、用静止的钟、所得出的动点M在曲线M(t)上运动的“相对加速度”.显然,这个“相对加速度”乃是“切向加速度”与“法向加速度”的矢量合成结果.
下面,我们来研究在均匀引力场中,物质的运动方程.为了简便起见,这里选择微观粒子沿着X轴方向的运动为运动的正方向.这里区分为两种运动状况来加以考虑.
第一,粒子在自由空间中的曲线运动
按照广义时空相对论的观点:在相互作用传播速度有限性的前提下,运动系上的钟、与静止系上的钟,不可能绝对地同步地记录到一个运动事件的两种不同的时间坐标t*和t.因此,如果利用不同的参变数t和t* 来表示(4)式的话,则相应的数学形式也就有所不同.根据本文讨论的需要,我们直接按照广义时空相对论的理论结果,写出运动时钟的纯量读数t* 和静止时钟的纯量读数t之间的关系:
dt* =ξdt,或 dt*/dt =ξ (9)
其中,
ξ= c/(c2 +υ2)1/2 (10)
对于自由空间中的匀速运动,(8)式中的η= 0,并且υ是常数,由此而来,(8)式右端的第一项等于0. 以及ξ是常数.于是,把(9)式代入(8)式便可以得出:
d2M/dt2 = k[υ2c2/(c2 +υ2)]μ (11)
再把关系式
V = υc/(c2 +υ2)1/2 (12)
代入上式,则有:
d2M/dt2 = kV2μ (13)
我们用曲率半径ρ= 1/k代入上式,则有:
d2M/dt2 = (V2/ρ)μ (14)
这就是“匀速圆周运动”的基本公式.这一结果表明:在一个与外界没有任何联系的封闭的自由空间内,物体的绝对线速度υ和相对加速度都是常数,且其方向指向圆心.它的运动轨迹则是一个封闭的圆周.当体系本身具有恒定的初速度υ0时,它的运动轨迹就是一条等螺距的螺旋线.
第二,粒子在均匀引力场(η= Const.)中的运动
按照(9)式,则有:
dt*2/dt2 =ξ2 = c2/(c2 +υ2) (15)
在η等于常数的情况下,将(15)式代入(8)式,并引入相对加速度符号a(t) = d2M/dt2,得出:
a(t)=τηc2/(c2+υ2)+μkc2υ2/(c2+υ2) (16)
然后,再引入符号V2/ρ=ω公2ρ,以及ω自2 r =(ηV2/υ2), 其中,ω公为粒子的公转频率,ω自为粒子绕着质心“自旋”的角频率,r代表微观粒子本身的半径,则上式就可以改写成:
a(t)=(ω自2 r)τ+ (ω公2ρ)μ (17)
这就是在均匀外力作用下(η≠0),微观粒粒子的运动方程.不难理解,如果没有这种均匀外力的作用,微观粒子就不会具有自旋分量,即上式中的第一项.
在上式中,如果把第一项代表切线方向的相对加速度,第二项代表了主法线方向的相对加速度.而切线τ方向的相对加速度代表着微观粒子的“自旋”,而主法线μ方向的相对加速度代表着微观粒子的“公转”.这两种加速度的合成结果,导致微观粒子在前进运动的同时,伴随着自旋以及绕着前进方向为轴线的公转.其轨迹是一条螺旋线.不言而喻,所有化学元素的分子,例如氮(N)、氢(H)、碳(C)的分子等都是微观粒子,因此,它们一定会呈现螺旋式的运动状态.在这种运动状态的影响下,由碳水化合物所构成的蛋白质分子必然会出现螺旋状的结构.
四 核苷酸的类型与双螺旋结构的原因
根据微分几何的理论结果,我们知道
d2M/dt2 =τd2s/dt2 +μk(ds/dt)2 (18)
以及
d2M/ds2 = kμ (19)
现在,我们把上式的二阶导数d2M/ds2再对具有“内蕴意义”的参数“s”微分,就得出了它的三阶微分关系式.不过,这里并不是直接把二阶导数d2M/ds2 = kμ对特别参数“s”进行微分,而是把这个式子右端的矢量μ和曲率k的乘积进行微分.由于从这里出发会使问题大为简化,所以,我们的讨论将从对矢量μ的微分开始,然后所得出的不变式来表示三阶导数d3M/ds3、以及d3M/dt3.不过,这里不准备进行具体的分析与讨论,而是直接地引用微分几何的理论结果(参见[3],第69—72页),写出三阶微分邻域的不变式如下:
dτ/ds = kμ;dμ/ds = - kτ+ζβ;dβ/ds = -ζμ (20)
其中,β是副法线方向上的单位矢量.它的方向垂直于由τ和μ相交后所构成的平面.上式中各公式的符号是选择了“右旋坐标系”时的情况.倘若是改为“左旋坐标系”,对于曲线M(t)的定向运动来说,在切矢量τ改变方向时,在切线单位矢量τ与主法线单位矢量μ确定的旋转方向下,公式(20)所确定的副法线单位矢量β将改变自己的正方向.所以,由方程(20)所确定的不变式“ζβ”也随之改变符号,即:由(+ζβ)变成了(-ζβ);为了保持曲线M(t)的不变式ζ的符号,必须在公式(20)中改变矢量“β”的符号.这样一来,在左旋的坐标系中,相伴三面形单位矢量导数的“基本关系式”可以写成下列的形式:
dτ/ds = kμ;dμ/ds = - kτ-ζβ;dβ/ds = -ζμ (21)
其中,“ζ”是曲线的“挠率”,而r = 1/ζ是曲线的“挠率半径”.其中,符号“ζβ”的“正”与“负”,代表着参数相同的两个粒子之间的“自旋方向”刚好相反.
下面,我们取dβ/ds = 0,——它代表着微观粒子的自旋轴的方向始终平行于粒子的前进方向,且β的数值不跟随着粒子的运动路程而变换.结果,上式就可以化成:
dτ/ds = kμ;dμ/ds = - kτ-ζβ (22)
上式表明,刚体的任何运动都可以分为两个部分:一是远离坐标原点的平行移动;二是绕固定轴的转动.换言之,在每一个给定的瞬间,物体的运动都是由两个基本的运动所组成:第一,平移——此时物体在每一给定的时间内,它的各个部分都具有相同的运动速度.第二,转动——此时物体上的某一条直线固定不动,而物体的其它部分则绕着这个固定的直线旋转.而这种旋转可以分成两个部分,一个是绕着固定旋转轴的“公转”,另一个是绕着粒子质心的“自旋”.正如(17)式所示,第一项代表着粒子围绕着质心的“自旋”;而第二项代表着围绕前进方向的“公转”.
不难理解,在上述约定的前提条件下,当粒子在前进(dτ/ds>0)、或后退(dτ/ds<0)的过程中,相伴三面形T(M,τ,μ,β)的顶点M都同时包含着“平移”和“转动”两个方面.这里所包含的平移和转动,总共可以分成四种情况,分别由下列四个关系式来单独地确定:
dτ/ds = kμ;dμ/ds = - kτ+ζβ; ………… ①
dτ/ds = kμ;dμ/ds = - kτ-ζβ; ………… ② (23)
dτ/ds = - kμ;dμ/ds = kτ-ζβ; ………… ③
dτ/ds = - kμ;dμ/ds = kτ+ζβ; ………… ④
在上述四个关系式中,曲线上的每个动点M联系着一个相伴三面形T(M,τ,μ,β),它是由曲线上对应点发出的“切矢量”、“主法线矢量”、“副法线矢量”所构成的“直角三面形”.这些关系式不仅给出了平移的“正方向”与它的“反方向”,而且给出了每种情况下的转动.单纯地就转动而言,这些公式一方面给出了“左旋公转”与“右旋公转”的情况;另一方面给出了顶点M围绕着自己的质心“左旋自旋”与“右旋自旋”的情况.当相伴三面形的顶点M移动时,动点M所描绘的运动轨迹就肯定是一条螺旋状的曲线.值得指出的是,在粒子构成的“自旋”中,η≠0是至关重要的.正是基于自旋的存在,所以才能出现以上四种独立的运动类型.这里,如果我们把η≠0看成是地球引力场的作用,那么,上式所代表的自旋一定与引力场的性质有关.
普遍的规律,对于两个基本相同的粒子来说,只有它们的自旋相反时,才能发生“耦合作用”而成对地出现.并且,只有自旋相反的粒子之间实现了耦合,其状态才是最稳定的状态.基于这一考虑,我们大胆地推测:核苷酸分子总是成对地耦合在一起.假如情况真地象我们推测的那样,再考虑到每个核苷酸分子的运动轨迹都是螺旋式的结构形状,那么,由这些成对存在着的核苷酸分子所构成的DNA分子,就必然具有双螺旋式的结构特征.另外,由于粒子的自旋运动来自于所在星球的引力特征,以,地球上生物的DNA分子,在一定程度上受到了地球引力的影响.
为了形象的理解上述观点,我们不妨反过来思考,即从DNA分子的双螺旋结构中,反过来考虑微观粒子螺旋式的运动状态.广义时空相对论业已证明,只有这种螺旋式的运动状态,才能体现出微观粒子“波动性”与“粒子性”的对立统一.——即微观粒子的“波粒二象性”.如果不是这种运动状态,将难以解释微观粒子的“波粒二象性”.实际上,这种理解方法在物理学中被经常地运用.例如,在中学物理中,人们就是利用“铁粉”在磁场中的分布状况,来证实“磁力线”的存在.正如所知,磁力线本身是看不见的,所以人们只好通过铁粉在磁场中的分布状态,来间接地证明磁力线本身的分布状况.有了铁粉的分布状况,就间接证明了磁力线的形状.
再者,由于只有那些自旋相反的核苷酸分子才能够相互耦合而成对地出现,并且这些自旋相反的核苷酸分子的耦合结果只能具有以下四种可能,因此说,所有核苷酸分子只有T、L、B、M四种类型.为了明确,我们把(23)式中的四个式子间的可能耦合列成下表.
耦合条件 公转方向相同 公转方向相反
自旋方向必须相反
①—②,③—④
①—③,②—④
上表列出了核苷酸分子各种可能的耦合关系.从上表所列出的耦合关系可以看出,核苷酸分子的耦合情况只能是表中所列出的“四种组合”,即:①—②,③—④,①—③,②—④.在给定的、均匀的引力场中,这四种结构特征应该是唯一的.所以,地球上生物体的DNA分子只能有四种类型,并且这四种类型DNA分子的自我复制功能也是唯一的.进一步地考虑,生物体的遗传特征,在一定的程度上取决于所在星球上的引力特征.改变引力场,有可能改变DNA分子的形状.
五 结 论
总之,通过上述讨论,回答了四个问题:一是蛋白质分子螺旋结构特征的力学原因.二是,核苷酸分子成对出现的力学原因;三是,由于核苷酸分子的成对出现,所以DNA分子必定是双螺旋结构;四是,由于同种核苷酸分子的耦合只能有四种情况,所以导致了DNA分子只能有四种类型,以及它们唯一的自我复制功能.再者,通过蛋白质分子的螺旋结构和DNA的双螺旋结构特征,反过来证明了微观粒子的运动形态的螺旋式特征.而且,只有这种螺旋式的运动特征,才能真正体现出微观粒子的波动性与粒子性的统一,进而证明广义时空相对论的正确性.
参考文献:
[1]《DNA双螺旋结构发现的前前后后》 作者:徐九武,科报网,《生命科学的里程碑》.
[2]《广义时空相对论》夏烆光著,人民交通出版社,北京,2003年1月 第一版.
[3]《微分几何教程》[苏] С.П.芬尼可夫 著,施祥林、徐家福 译,高等教育出版社,1954
年 7月第一版.
- 左迁
-
使遗传物质能更稳定的遗传,如果是单链的RNA作为遗传物质像RNA病毒比较容易发生基因突变,对大多数情况来说基因突变是有害的
- gitcloud
-
碱基堆积力是指在DNA双螺旋结构中,碱基对层叠于双螺旋的内侧,相邻疏水性碱基在旋进中彼此堆积在一起相互吸引形成的作用力。维持DNA双螺旋结构的稳定的力主要是碱基堆积力,而形成双螺旋结构时碱基堆积力最能使该结构趋于稳态,因为此时碱基堆积力最大
- 陶小凡
-
DNA分子呈现双螺旋结构的原因是双螺旋结构是进化的结果。双螺旋相比单链更稳定,可以保证遗传的稳定。
DNA是脱氧核糖核酸,又称去氧核糖核苷酸,是染色体主要组成成分,同时也是主要遗传物质。DNA分子的双螺旋结构是相对稳定的。这是因为在DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。另外,碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。各个碱基对之间的这种纵向的相互作用力叫做碱基堆集力,它是芳香族碱基π电子间的相互作用引起的。现在普遍认为碱基堆集力是稳定DNA结构的最重要的因素。再有,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。
什么是DNA双螺旋结构?
【答案】:DNA的双螺旋结构模型是Watson和Crick于1953年提出的。该模型的建立对促进分子生物学及分子遗传学的发展具有划时代意义。对DNA本身的复制机制、对遗传信息的存储方式和遗传信息的表达、对生物遗传稳定性和变异性等规律的阐明起了非常重要的作用。其主要内容如下:(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕;两条链都为右手螺旋。(2)脱氧核糖和磷酸交替连接,排列在双螺旋外侧,彼此通过3",5"-磷酸二酯键连接,构成DNA分子的基本骨架;碱基排列在双螺旋的内侧,碱基平面与纵轴垂直。(3)双螺旋的平均直径为2.0nm,相邻碱基平面之间垂直距离为0.34nm,每10个碱基对旋转一圈,碱基对之间的螺距为3.4nm。(4)在双螺旋的表面分别形成大沟和小沟。(5)两条链借助碱基之间的氢键和碱基堆积力牢固结合,维持DNA结构的稳定性。[考点]DNA的双螺旋结构。2023-07-26 01:51:051
简述DNA双螺旋结构模型要点
DNA双螺旋结构模型的要点:1、由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;2、两条互补链围绕一“主轴”向右盘旋形成双螺旋结构;DNA分子结构3、DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息;4、DNA分子结构双螺旋的表面形成两条凹槽,一面宽而深,称之深沟;另一面狭而浅,称之浅沟。与特定功能的蛋白质(酶)识别和调控相关。DNA链5、DNA链碱基排列顺序的组合方式无限,形成多种不同的DNA分子。扩展资料:DNA双螺旋结构的发现者富兰克林(Rosalind Elsie Franklin)于1952年5月获得一张非常清晰的B型DNA衍射照片(照片51号)。1953年1月,沃森访问国王学院时看到了这张照片,立刻领悟了双螺旋模型的关键。他在回忆录《双螺旋》中写道:“在看到图片的瞬间,我目瞪口呆、心跳加速,图片上占主要位置的黑色十字映像只能从螺旋结构中产生”。参考资料来源:百度百科-DNA双螺旋结构2023-07-26 01:51:141
dna双螺旋结构模型怎么做
DNA双螺旋结构模型通常是通过搭建分子模型来完成的。以下是一些基本步骤:材料:- 4种颜色的塑料珠(代表4种不同的碱基)- 扁平的手掌大小底座(用作支架)- 钢丝或木棒(用于连接珠子)步骤:1. 将不同颜色的塑料珠分别组合成配对的碱基,即腺嘌呤 (A) 和胸腺嘧啶(T),以及鸟嘌呤(C) 和鸟嘧啶(G)。2. 将钢丝或木棒插入底座中心,作为支架。3. 按照规则将珠子串在钢丝上,每个碱基由两个珠子表示,一个代表碱基的氮碱基,另一个代表糖分子和磷酸基团。4. 使用适当的间距,将珠子与钢丝相连,以形成DNA双螺旋的“阶梯状”结构。5. 通过不断加入珠子,直到完成整个DNA双螺旋结构。需要注意的是,在制作DNA双螺旋结构模型时,请保持每个碱基之间的距离和比例一致,并保证模型稳定性,避免出现塑料珠掉落或模型塌陷等情况。此外,在制作过程中,也可以参考相关教材或在线资源,以获得更加详细的说明和指导。2023-07-26 01:51:351
请问DNA的双螺旋结构模型是什么样的?
1.由两条反向平行的脱氧核苷酸长链构成右手螺旋结构,螺旋直径2nm;螺旋周期包含10对碱基。2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧,碱基平面与螺旋轴垂直,螺距3.4nm;相邻碱基对平面的间距0.34nm。3.两条 DNA 链依靠彼此碱基之间形成的氢键而结合在一起,碱基对之间遵循碱基互补配对规律,A与T相配对,形成2个氢键,G与C相配对,形成3个氢键。4.疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持5.DNA 双螺旋的表面存在一个大沟和一个小沟,蛋白质分子通过这两个沟与碱基相识别。2023-07-26 01:51:531
如何制作dna双螺旋结构模型
制作DNA双螺旋结构模型可以通过以下步骤完成:步骤一:收集材料制作DNA双螺旋结构模型需要的材料有:双股DNA模型彩色糖果或球形磁珠直径约为1cm的木棒或竹签剪刀和胶水步骤二:制作DNA模型的主干首先,我们需要制作DNA模型的主干。将木棒或竹签分成两个长度相等的部分,然后用彩色糖果或球形磁珠把它们连接起来。在连接点处使用胶水固定,以确保主干的稳定性。步骤三:制作DNA模型的核苷酸接下来,制作核苷酸。核苷酸是DNA的构成单位,由磷酸、脱氧核糖和一种碱基组成。我们可以用糖果或球形磁珠代表脱氧核糖和碱基,用小木棒或竹签代表磷酸。将三个组成部分连接在一起,制成核苷酸模型。步骤四:将核苷酸连接成DNA双链将核苷酸按照DNA双链的规律连接起来。DNA双链由两个互补的链组成,每个链都由一系列核苷酸组成。具体来说,腺嘌呤(A)只能与胸腺嘧啶(T)配对,胞嘧啶(C)只能与鸟嘌呤(G)配对。因此,我们可以将A和T、C和G的核苷酸按照互补规律连接起来,形成DNA双链。步骤五:制作DNA双链的螺旋结构将两个DNA双链缠绕在一起,形成DNA双螺旋结构。将两个DNA双链分别绕在两根细木棒上,然后将它们靠近,使它们缠绕在一起。注意,DNA双链是以右手螺旋的形式缠绕在一起的,因此在缠绕时应保持正确的方向。步骤六:调整DNA模型最后,调整DNA模型。将DNA双螺旋模型放在一个水平的表面上,确保它的稳定性。如果需要,可以对DNA双链进行微调,以使其更符合真实的DNA结构。总结:制作DNA双螺旋结构模型需要准备一些材料,包括双股DNA模型、彩色糖果或球形磁珠、直径约为1cm的木棒或竹签、剪刀和胶水等。制作DNA模型的主干、核苷酸和DNA双链,然后将两个DNA双链缠绕在一起,形成DNA双螺旋结构。最后,调整DNA模型,使其更符合真实的DNA结构。制作DNA双螺旋结构模型需要一定的耐心和技巧,但是这个过程也可以帮助我们更好地理解DNA的结构和功能。2023-07-26 01:52:001
DNA双螺旋结构模型的要点有哪些?
【答案】:1953年Watson和Crick提出了DNA双螺旋结构模型,该模型的要点是:(1)DNA分子是由两条反向的平行多核苷酸链构成的,一条链的5"-末端与另一条链的3"-末端相对。两条链的糖-磷酸主链都是右手螺旋,有一共同的螺旋轴,螺旋表面有大沟和小沟。(2)两条链上的碱基均在主链内侧,一条链上的A一定与另一条链上的T配对,G一定与C配对。(3)成对碱基大致处于同一平面,该平面与螺旋轴基本垂直。相邻碱基对平面间的距离为0.34nm,双螺旋每旋转一周有10对碱基,螺旋直径为2nm。大多数天然DNA属双链结构,某些病毒如Фx174和M13的DNA是单链DNA分子。2023-07-26 01:52:271
名词解释:DNA双螺旋模型。
http://wapbaike.baidu.com/view/217753.htm?adapt=1&fr=aladdin&bd_source_light=17018512023-07-26 01:52:402
dna双螺旋结构
DNA双螺旋结构包括三点:1、由两条反向平行的脱氧核苷酸长链构成双螺旋结构。2、磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧。3、两条链的碱基间能过氢键形成碱基对,碱基对之间遵循碱基互补配对规律(A和T;G和C)。脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。主要功能是信息储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。带有蛋白质编码的DNA片段称为基因。真核生物的核内DNA是双螺旋的,由两条反相平行的DNA组成,碱基按A,T;CG配对。DNA是有脱氧核糖核苷酸组成的。DNA分子是长而相互缠绕的双链结构,整个模型像一个双螺旋而上升的楼梯,梯子两边的“扶手”是有磷酸和脱氧核糖相间连接而成的,中间的“踏板”是分别连在两边脱氧核糖分子上的两个碱基。脱氧核糖,碱基和磷酸组成了DNA分子的基本单位——脱氧核苷酸。由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2023-07-26 01:53:041
什么是DNA分子双螺旋结构模型?
DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。2023-07-26 01:53:282
DNA的二级结构模型是双螺旋结构?
DNA双螺旋结构模型(DNA double helix)是James Watson 和Francis Crick 于1953年提出的描述DNA二级结构的模型,也称为Watson –Crick 结构模型。模型要点是:(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5"到3",另一条链的走向是3"到5";(2)碱基平面向内延伸,与双螺旋链成垂直状;(3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构;(4)A与T配对,其间距离1.11nm;G与C配对,其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等;(5)在结构上有深沟和浅沟;(6)DNA双螺旋结构稳定的维系 横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。希望我的回答可以帮助到您,望采纳。。。谢谢2023-07-26 01:53:401
dna分子双螺旋结构模型属于什么模型?
DNA分子双螺旋结构模型属于物理模型。在生物学中,物理模型就是以实物或图画形式直观地表达认识对象的特征。在教材中出现的也有很多,比如细胞的亚显微结构模型,DNA的双螺旋结构模型等。生物学中的物理模型构建的一般步骤:(1)了解构建模型的基本构造;(2)制作模型构建的基本原件(单位);(3)了解各基本原件之间的关系;(4)按照相互关系连接各基本原件;(5)检验与修补。生物学中物理模型的实例:生物体结构的模式标本,模拟模型如细胞结构模型、各种组织器官的立体结构模型、DNA分子双螺旋结构模型、生物膜镶嵌模型、减数分裂中染色体变化模型、血糖调节模型等。2023-07-26 01:54:001
简述DNA双螺旋结构模型特点及碱基互补原则。
我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.DNA双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2.碱基互补配对原则theprincipleofcomplementarybasepairing:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C2023-07-26 01:54:141
dna双螺旋结构模型有哪些基本特点,这些结构解释生命现象
答案要点:a.两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟.b.磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T配对,之间形成2个氢键,G-C配对,之间形成3个氢键(碱基配对原则,Chargaff定律).c.螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对重复一次,间隔为3.4nm.该模型揭示了DNA作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础.该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石.2023-07-26 01:54:232
如何制作DNA分子的双螺旋结构模型
用细铁丝做架子2023-07-26 01:54:347
dna的双螺旋结构模型有哪些特征?可用该模型解释生物体的哪些活动
假如生活撂倒了你,白墨迹,白叽歪,白咋呼,白吱声。你奏趴着,也白起来,一直坚定不移的往前故涌……故涌……一直故涌…2023-07-26 01:55:082
简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。
1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,_位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构2023-07-26 01:55:341
dna分子双螺旋结构模型属于什么模型?
DNA分子双螺旋结构模型属于物理模型。在生物学中,物理模型就是以实物或图画形式直观地表达认识对象的特征。在教材中出现的也有很多,比如细胞的亚显微结构模型,DNA的双螺旋结构模型等。生物学中的物理模型构建的一般步骤:(1)了解构建模型的基本构造;(2)制作模型构建的基本原件(单位);(3)了解各基本原件之间的关系;(4)按照相互关系连接各基本原件;(5)检验与修补。生物学中物理模型的实例:生物体结构的模式标本,模拟模型如细胞结构模型、各种组织器官的立体结构模型、DNA分子双螺旋结构模型、生物膜镶嵌模型、减数分裂中染色体变化模型、血糖调节模型等。2023-07-26 01:55:481
简述dna双螺旋结构模型特点。
DNA双螺旋结构模型特点简述如下:有两条DNA单链,反向平行,一段由3"端开始,一段由5‘端开始,螺旋成双链结构.外部是磷酸和脱氧核糖交替构成的内部碱基遵循碱基互补配对原则(A-T,C-G)碱基之间是由氢键连接脱氧核苷酸之间由磷酸二脂键链接.2023-07-26 01:56:071
DNA双螺旋结构模型的主要内容是什么? 生物体内遗传信息的传递主要是通过什么方式实现的?
沃森和克里克认为,DNA分子的立体结构是规则的双螺旋结构。这种结构的主要特点是:(1)DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。(2)DNA分子中的脱氧核糖和磷酸交替连结,排列在外侧,构成基本骨架;碱基排列在内侧。(3)DNA分子两条链上的碱基通过氢键连结成碱基对,并且碱基配对有一定的规律:A(腺嘌呤)一定与T(胸腺嘧啶)配对;G(鸟嘌呤)一定与C(胞嘧啶)配对。碱基之间的这种一一对应关系,叫做碱基互补配对原则。在DNA分子的结构中,碱基之间的氢键具有固定的数目,即A与T之间以2个化学键相连(A=T),G与C之间以3个化学键相连(G≡C)。由于嘌呤分子(A、G)大于嘧啶的分子(C、T),因此,要保持DNA两条长链之间的距离不变,必定是一个嘌呤与一个嘧啶配对。根据碱基分子所占空间的大小,只有A与T配对,G与C配对,碱基对的长度才能大致相同。根据DNA分子的上述特点,沃森和克里克制作出了DNA分子的双螺旋结构模型第二个是DNA的解旋复制2023-07-26 01:56:202
DNA双螺旋结构是什么时候,由谁提出来的?试述其结构模型。
1953年,沃森和克里克发现了的结构;主链(backbone) 由脱氧和磷酸基通过酯键交替连接而成。主链有二条,它们似“状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外侧。碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2023-07-26 01:56:481
watson-crick dna双螺旋结构模型的要点不包括
watson-crick dna双螺旋结构模型的要点不包括碱基在外。双螺旋结构的提出者1953年2月,沃森(Watson)、克里克(Crick)通过维尔金斯看到了富兰克林(Rosalind Franklin)在1951年11月拍摄的一张十分漂亮的DNA晶体X射线衍射照片,这一下激发了他们的灵感。他们不仅确认了DNA一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。双螺旋结构是生物结构中常见的基本单元,在1953年,由年仅25岁的詹姆斯·沃森和37岁的弗朗西斯·克里克共同发现的。双螺旋模型的意义不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。2023-07-26 01:57:041
下列关于DNA双螺旋结构模型的叙述,不正确的是()
下列关于DNA双螺旋结构模型的叙述,不正确的是() A.双股脱氧核苷酸呈反向平行B.DNA形成的均是左手双螺旋结构C.双股链间存在碱基配对关系D.螺旋每周包含10对碱基E.螺旋的螺距为3.4nm正确答案:DNA形成的均是左手双螺旋结构2023-07-26 01:57:201
为什么说DNA分子双螺旋结构模型的诞生是生命科学划时代的事件?
我简单地说(楼上真是又长又臭,估计楼主也没有心情看完吧),DNA分子双螺旋结构模型的诞生开创了一门新的学科——分子生物学。它的提出就如马克斯·普朗克的同量子理论开创了量子力学一样,是生命科学史上最为光辉灿烂的成就之一2023-07-26 01:57:342
制作dna双螺旋结构模型的 方法步骤
主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。DNA双螺旋结构的多样性包括A-DNAB-DNA Z-DNAn三种DNA构型的比较2023-07-26 01:57:491
为什么DNA双螺旋结构的螺旋方向是向右边,用物理知识怎么解释
DNA目前发现有三种螺旋方式,而且最新发现都有存在生物中。2023-07-26 01:58:042
简述DNA双螺旋结构模型的基本要点?
1两条平行的多核苷酸链,以相反的方向(即一条由5‘—3",另一条由3‘—5")围绕同一个(想像的)中心轴,以右手旋转方式构成一个双螺旋。2疏水的嘌呤和嘧啶碱基平面层叠于螺旋的内侧,亲水的磷酸基和脱氧核糖以磷酸二酯键相连形成的骨架位于螺旋的外侧。3内侧碱基成平面状,碱基平面与中心轴相垂直,脱氧核糖的平面与碱基平面几乎成直角。每个平面上有两个碱基(每条链各一个)形成碱基对。相邻碱基平面在螺旋轴之间的距离为0.34nm,旋转夹角为36度。每十对核苷酸绕中心旋转一圈,故螺旋的螺距为3.4nm.4双螺旋的直径为2nm.沿螺旋的中心轴形成的大沟和小沟交替出现。DNA双螺旋之间形成的沟为大沟,两条DNA链之间的沟为小沟。5两条链被碱基对之间形成的氢键稳定地维系在一起。双螺旋中,碱基总是腺嘌呤与胸腺嘧啶配对,鸟嘌呤与胞嘧啶配对。2023-07-26 01:58:284
DNA双螺旋结构特点,根据其结构特点说明其生理功能
因为排列顺序多种多样,能储存大量遗传信息,体现在物种差异因为碱基互补配对原则,能精确复制,并传给子代可基因突变,适应自然选择2023-07-26 01:58:561
为什么中关村广场是 DNA双螺旋结构模型
中关村广场金色的DNA双螺旋结构是中关村高新技术产业区的标志。它代表了最先进的科技,也是奇迹和梦想的象征。2023-07-26 01:59:152
DNA的双螺旋结构是谁发现的?
沃森和克里克于1953年发现DNA的双螺旋结构,为分子生物学奠定了基础,他们也因此和威尔金斯共享了1962年诺贝尔奖的荣光。然而,很少有人记起这一里程碑式的工作中另外一位功不可没的科学家——富兰克林。罗莎琳德u2022富兰克林,出色的物理化学家、结晶学家和X射线衍射技术专家。1920年7月25日生于伦敦一个富裕的犹太家庭,15岁就立志要当科学家,1941年毕业于剑桥大学物理化学专业,后从事煤炭分子结构研究并于1945年获博士学位。“二战”后,她前往法国学习X射线衍射技术,1951年回国,在伦敦大学国王学院同威尔金斯一起研究DNA结构。当时人们已知DNA可能是遗传物质,但对其结构及作用机制还不甚了解。1951年,富兰克林成功拍摄出一张高清晰度的X射线衍射图,具有明显螺旋结构特征。她做出了DNA单位分子的完整空间描述,并且发现DNA具有双链螺旋结构,磷酸基团位于分子外侧,碱基位于内侧。此时,剑桥大学的沃森和克里克也在进行此项研究。1953年初,威尔金斯在富兰克林不知情的情况下给来访的沃森看了那张照片及测量数据。他们据此获得启发,立即悟到DNA的结构并于两周后搭建出双螺旋模型。但直至报告发表他们也没告知或提及富兰克林。1953年3月,当富兰克林将研究结果整理成文打算发表时,才发现DNA结构被破解的消息已出现在新闻简报中。当沃森等人获诺贝尔奖时,富兰克林已于1958年因病早逝,自然不在受奖之列。上世纪末,富兰克林这位“DNA黑暗女神”逐渐得到科学界认可:伦敦大学国王学院把新建的一座大楼命名为“富兰克林u2022威尔金斯”大楼,英国皇家学会也设立“富兰克林奖章”,以奖励在科研领域做出重大贡献的科学家。2023-07-26 01:59:241
DNA双螺旋有几种类型,它们分别由哪些序列特征和存在条件?
DNA双螺旋有五种类型。1、由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。2、碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数,螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2023-07-26 01:59:341
哪些实验证明DNA是双螺旋结构
DNA衍射图谱2023-07-26 01:59:502
DNA的双螺旋结构的模型图是如何得到的?
看插入的图,本问题看图就明白了.由于DNA聚合酶只能以5"→3"方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的.以3"→5"方向的亲代DNA链作模板的子代链在聚合时基本上是连续进行的,这一条链被称为前导链,而以5"→3"方向的亲代DNA链为模板的子代链在聚合时则是不连续的,这条链被称为滞后链.DNA在复制时,由滞后链所形成的一些子代DNA短链称为冈崎片段.冈崎片段的大小,在原核生物中约为1000~2000个核苷酸,而在真核生物中约为100个核苷酸.2023-07-26 01:59:582
dna双螺旋结构理论是由谁提出的?
DNA双螺旋结构理论是由美国生物学家沃森和英国物理学家克里克提出的。沃森和克里克用建构物理模型的方法研究DNA的结构。1957年,克里克提出中心法则:遗传信息可以从DNA流向DNA,即DNA的复制;遗传信息可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译。后来中心法则又补充了遗传信息从RNA流向RNA以及从RNA流向DNA两条途径。双螺旋结构特点:主链(backbone)由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2023-07-26 02:00:121
DNA的双螺旋结构模型,用自己的话解释怎么说?
你说的第一个问题和双螺旋结构没什么关系,是DNA的一级结构。核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。DNA的复制过程(一)DNA的半保留复制Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。(二)DNA复制的起始,方向和速度 DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3"—〉 5"走向,在其上DNA能以5"—〉3"方向连续合成,称为前导链(leading strand);另一条模板链为5"—〉3"走向,在其上DNA也是5"—〉3"方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。(三)DNA复制过程 以原核生物DNA复制过程予以简要说明1.DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。(2)DNA解链酶(DNA helicase) DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5"—〉3"方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3"—〉5"方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。(3)DNA解链过程 DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5"—3"持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。2.冈崎片段与半不连续复制 因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5"—〉3"方向,另一条是3"—〉5"方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5"—〉3"方向,不是3"—〉5"方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。3.复制的引发和终止 所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3"端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。(四)端粒和端粒酶 1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。 在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5"端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3"—OH作为引物,最后余下子链的5"无法填补,于是染色体就短了一点。在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。2023-07-26 02:00:261
DNA双螺旋结构模型要点及其与DNA生物学功能的关系
驱蚊器2023-07-26 02:00:382
简述B型DNA双螺旋结构模
1953年Watson和Crick在nature上发表了DNA双螺旋模型首次简要阐明了复杂DNA分子的二级结构,明确提出特异碱基配对可能是遗传物质的复制机制。要点如下: 1.两条反向平行的互补双螺旋链,一条方向为5‘→3",另一条方向为3‘→5",围绕同一中心纵轴,从右向上盘旋。 2.双螺旋磷酸-脱氧核糖主链在外,位于内的碱基平面与中心轴垂直。 3.每个碱基相聚0.34nm,同条链相邻碱基夹角36度,每10个碱基形成螺旋1周,螺距3.4nm。 4.露于螺旋外的磷原子离中心轴1.0nm,易与阳离子接近。 5.两条链相互碱基互补配对,即AT/GC,分别以2个和3个氢键相连。 6.两条单链之间由小沟,两个双链之间有大沟,他们在DNA双螺旋外交替出现。2023-07-26 02:00:451
简述DNA双螺旋结构模型要点
要螺旋形。。还得有一个一个的杠杠2023-07-26 02:01:075
DNA双螺旋结构的模型有哪些要点?
DNA双螺旋结构模型的要点:1、由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;2、两条互补链围绕一“主轴”向右盘旋形成双螺旋结构;DNA分子结构3、DNA分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息;4、DNA分子结构双螺旋的表面形成两条凹槽,一面宽而深,称之深沟;另一面狭而浅,称之浅沟。与特定功能的蛋白质(酶)识别和调控相关。DNA链5、DNA链碱基排列顺序的组合方式无限,形成多种不同的DNA分子。扩展资料:DNA双螺旋结构的发现者富兰克林(Rosalind Elsie Franklin)于1952年5月获得一张非常清晰的B型DNA衍射照片(照片51号)。1953年1月,沃森访问国王学院时看到了这张照片,立刻领悟了双螺旋模型的关键。他在回忆录《双螺旋》中写道:“在看到图片的瞬间,我目瞪口呆、心跳加速,图片上占主要位置的黑色十字映像只能从螺旋结构中产生”。参考资料来源:百度百科-DNA双螺旋结构2023-07-26 02:01:371
什么是DNA分子双螺旋结构模型?
DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。2023-07-26 02:01:541
DNA双螺旋结构模型有哪些基本要点
1)dna分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(a-t);鸟嘌呤必定与胞嘧啶配对(g-c),这种碱基间的氢链连接配对原则称为碱基互补规则维持dna双螺旋结构稳定性的因素主要是上下层碱基对之间堆砌力和链间互补碱基之间的氢键。在双螺旋结构中碱基堆砌构成疏水性核心,而亲水性带负电荷的糖-磷酸基团处于外部,使双螺旋更加稳固;而氢键不仅是一种稳定双螺旋的力量,同时也为选择正确碱基配对提供了分辨能力2023-07-26 02:02:012
什么是DNA分子双螺旋结构模型?
由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2023-07-26 02:02:091
什么是DNA分子双螺旋结构模型?
由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2023-07-26 02:02:183
如何制作DNA分子的双螺旋结构模型
根据DNA分子双螺旋结构的特点进行制作。具体流程如下:1、主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。2、碱基对:碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键,G与C间形成三个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。3、大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。4、结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。扩展资料:DNA分子双螺旋结构的相关说明:1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905-2002)测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。参考资料来源:百度百科-DNA双螺旋结构参考资料来源:百度百科-DNA分子参考资料来源:百度百科-DNA结构2023-07-26 02:02:421
简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。
dna双螺旋结构:有两条dna单链,反向平行,一段由3"端开始,一段由5‘端开始,螺旋成双链结构。外部是磷酸和脱氧核糖交替构成的,内部碱基遵循碱基互补配对原则(a-t,c-g),碱基之间是由氢键连接,脱氧核苷酸之间由磷酸二脂键链接。双螺旋模型的意义:双螺旋模型的意义,不仅意味着探明了dna分子的结构,更重要的是它还提示了dna的复制机制:由于腺膘呤(a)总是与胸腺嘧啶(t)配对、鸟膘呤(g)总是与胞嘧啶(c)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。2023-07-26 02:03:092
DNA的二级结构模型是双螺旋结构?
DNA双螺旋结构模型(DNAdoublehelix)是JamesWatson和FrancisCrick于1953年提出的描述DNA二级结构的模型,也称为Watson–Crick结构模型。模型要点是:(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5"到3",另一条链的走向是3"到5";(2)碱基平面向内延伸,与双螺旋链成垂直状;(3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构;(4)A与T配对,其间距离1.11nm;G与C配对,其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等;(5)在结构上有深沟和浅沟;(6)DNA双螺旋结构稳定的维系横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。希望我的回答可以帮助到您,望采纳。。。谢谢2023-07-26 02:03:222
简述DNA双螺旋结构模型特点及碱基互补原则。
我来说说吧,不知阁下是高中生还是大学生,如果是高中生的话,看生物必修2就解决了,课本上说的很清楚,如果是大学生的话,就可以进一步了解:1.DNA双螺旋结构特征(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N和O原子朝向分子表面。(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2.碱基互补配对原则theprincipleofcomplementarybasepairing:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C2023-07-26 02:03:291
DNA双螺旋模型特点?
DNA双螺旋结构模型的特点。1DNA是反向平行、右手螺旋的双链结构2.碱基互补配,对DNA双链之间形成了互补的碱基对;3.成对碱基大致处于同一平面4.双螺旋内,横向靠氢键、纵向靠碱基间平面间的堆积力维持稳定以上为百度搜索,2023-07-26 02:03:564
dna双螺旋结构模型有哪些基本特点,这些结构解释生命现象
答案要点:a.两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟.b.磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T配对,之间形成2个氢键,G-C配对,之间形成3个氢键(碱基配对原则,Chargaff定律).c.螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对重复一次,间隔为3.4nm.该模型揭示了DNA作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础.该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石.2023-07-26 02:04:161
DNA双螺旋结构模型的基本要点是什么?
DNA双螺旋结构特征:主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。 所谓双螺旋就是针对二条主链的形状而言的。 碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T 间形成两个氢键。 DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求, 而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。 每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。 也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。 大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对, 从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。 在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。 结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。2023-07-26 02:04:261
DNA分子双螺旋结构模型哪位能简单介绍一下?神经生物学知识哪里可以了解
DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件,不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。 一套DNA分子双螺旋结构积塑模型,其特征是:a.这套DNA分子双螺旋积塑模型由红、黄、兰绿四种优质塑料色球(分别代表A、T、G、C四种核苷)和一种优质棕色塑料色棒(代表磷酸P)共五种另件所组成。 b.红球和黄球直径φ18,各带有一个直径φ10的白色圆柱形突出物,在红球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部前后各突起一个直径φ3的半圆形凸起物,在黄球的白色圆柱上伸出一直径φ6的圆棒,圆棒前后各开有一个直径φ3的半圆形凹槽,红球和黄球的结合,即A与T的结合,可通过φ6圆棒插入φ6圆孔来实现。 c.蓝球和绿球直径也是φ18,也各带有一个直径φ10的白色圆柱形突出物,在兰球的白色圆柱上开有一个直径φ6的圆孔,圆孔内部沿圆周对称地突起三个直径φ3的半圆形凸起物,在绿球的白色圆柱上伸出一φ6圆棒,在圆棒周围对称地开有三个直径φ3的半圆形凹槽,兰球和绿球的结合,即G和C的结合,可通过φ6圆棒插入φ6圆孔来实现。 d.每个色球除带有一个白色圆柱形突出物外,还各开有二个直径φ6的圆孔,它们的位置一上一下、一左一右,分别对称地绕水平和垂直轴线旋转36角。利用直径φ6的棕棒插入二个色球相对着的二个φ6圆孔,可将任意二个色球连接起来,从而可组成DNA单股螺旋链,所开φ6圆孔的角度,可保证每一螺旋上有10个色球, e.每一对配对色球上的一个φ3半圆形凸起物和一个φ3半圆形凹槽代表一个氢(H)键,由于A、T和G、C色球上φ3半圆形凸起物和半圆形凹槽数目不同(一为2,一为3),角度不同,因此A球只能与T球结合,G球只能与C球结合,A与C、G与T球之间不能结合(不能插入),从而可实现A-T、G-C之间的严格配对关系,利用这种配对关系,可组成互补配对的DNA双螺旋链,并导致DNA分子具有自我复制的功能。(其中A、T、C、G 均为碱基;A:腺嘌呤;T:胸腺嘧啶;C:胞嘧啶;G:鸟嘌呤。当T转录时,变为U:尿嘧啶)。 沃森和克里克是科技发展史上的一对幸运儿。他们仅用了18个月就解决了DNA分子结构这样一个当时的世界难题。是年沃森仅25岁,克里克也才37岁。 沃森从小聪颖好学,15岁即入芝加哥大学学习动物学。毕业时看到了量子力学大师薛定谔的《生命是什么?》一书,被深深吸引,决心探寻生命的奥秘。19岁进入印第安纳大学师从卢里亚教授,以研究X射线对噬菌体的作用而顺利获得遗传学博士学位。1951年春,一个偶然的机会,沃森代替导师参加一个在意大利那不勒斯召开的生物大分子结构学术会议,受伦敦皇家学院晶体学家威尔金斯(M·Wilkims,1916—)做的关于DNA X射线衍射的研究报告所启发,认准了X射线衍射法是一把可以打开生命奥秘的钥匙。于是,通过一番努力,终于来到剑桥大学卡文迪什实验室,从事蛋白质和多肽晶体结构的研究。在这里,他碰到了克里克。 克里克比沃森年长10多岁,1937年就毕业于伦敦大学物理系,因第二次世界大战而中断了博士学业。战后,他也受到薛定谔《生命是什么?》一书的影响,决心改行,到了卡文迪什实验室,在佩鲁兹教授的指导下,从事多肽和蛋白质的X射线衍射分析的研究,继续攻读博士学位。沃森是一位在遗传学上很有造诣的青年学者,寡言少语,有一股闯劲。而克里克则对X射线结晶学十分了解,性格外向,阅历丰富。他们又都对DNA结构与生物学功能的关系有浓厚的兴趣。这种志向上的一致,学术上的互补和性格上的默契,可谓天作之合。于是现代生物学发展史上最高成效的合作就这样开始了。你可以到生物帮那里详细的了解。那里提供各种生物制剂试剂、实验抗体、仪器耗材、医疗设备等产品交易信息,提供生物技术知识方法文档、生物医药等领域的资讯please click to connect www.bio1000.com/zt/dna/3849.html .I hope that i can help you 但他们的研究并非一帆风顺。由于没有自己的实验室,他们就利用别人的分析数据,开始做DNA分子模型的研究。首先,他们采用当时多数科学家关于DNA结构是螺旋型的猜测搭建分子模型,但是DNA分子是单链、双链还是三链?颇费心力。经过一番周折,好不容易建立了一个三螺旋模型,但在征求同行专家意见时受到了批评和质疑,与实验结果也不相符,使他们一下子陷入了困境。屋漏偏遭连阴雨。这时,沃森的奖学金被中断,克里克因不认真做博士论文,被指摘为不务正业而受到校方批评,导师也严令他放弃DNA结构的研究,加劲做博士课题。但他们并未因这一连串的打击而退缩,相反他们从别的研究小组的报道中受到启发和鼓舞,看到了胜利的曙光,也感受到竞争的激烈和时间的紧迫。于是他们迎难而上,加快研究步伐,终于在1953年2月28日提出了DNA的双螺旋分子结构,并立即整理成文,寄信《Nature》杂志发表,争得了创新的先机。9年之后,他们获得了诺贝尔奖。 沃森和克里克这两个年青人之所以在DNA分子结构研究的激烈竞争中脱颖而出,除了他们自身的努力和卓有成效的合作之外,还在于他们把握了科学研究的成功之道。 科学研究的首要问题是选题。课题选得准确与否,它决定了科研进展的快慢,成果水平的高低乃至于最终的成败。这就如同打井选址一样,如果选点不对,那么你花再大的力气,用再先进的设备,也是打不出水来的。20世纪50年代以前,生物学界普遍认为蛋白质是决定遗传基因的主要物质,因此许多科学家包括一些世界知名的权威,都投身于蛋白质分子结构的研究。但沃森和克里克不迷信权威,敢于向传统观念挑战。他们从前人的研究中敏锐地看到DNA在遗传中的重要作用。他们认为:“蛋白质并不是真正解开生命之谜的罗塞达石碑。相反,DNA却能提供一把钥匙。使用这把钥匙,我们就能找出基因是如何决定生物性状的。”他们坚信DNA结构的研究“称得上是自达尔文进化论发表以来在生物学领域内最轰动的事件。”因此,他们才会在众说纷纭之中不改初衷,在混沌不清的表象面前不迷失方向,在困难曲折中毫不退缩,使他们的研究一下子跃到了世界生物学研究的最前沿,为他们取得重大突破奠定了基础。 科学研究要确保成功,还必须有好的可靠的方法。这就如同过河一样,不解决好桥或船等过河的工具,是无论如何也不可能从“未知”的此岸到达“已知”的彼岸的。沃森他们在研究工作中,非常注意科学方法。首先,他们善于博采众长,注意收集各种有关信息,从中汲取营养。当时,他们同几个研究小组建立了密切的学术交流关系,经常请同行专家来讨论问题,征求意见。他们很好地分析了当时信息学派、结构学派和生化学派对DNA结构研究的成果,综合各家之长,为我所用。例如,威尔金斯和弗兰克林小组在X射线衍射结晶学的研究方面处于世界前列,特别是弗兰克林,她已经得到了DNA最清晰的X射线结晶衍射图,可以说是完成了DNA结构的大部分工作。这张图给沃森他们以极大的启发,但是弗兰克林和威尔金斯对用构建分子模型的方法来阐释生物遗传功能不感兴趣,因此,仅管他们在专业造诣上比沃森和克里克高,但视野的局限使他们最终未能捅破这层窗户纸。所幸的是威尔金斯最后还是与沃森与克里克一起荣获了诺贝尔奖,而弗兰克林则与诺贝尔奖失之交臂,令人惋惜。还有美国著名的化学键权威、诺贝尔奖获得者鲍林,他的研究小组从化学键的角度用摆弄分子模型的方法解决了DNA分子结构中的不少难题,但由于缺乏X射线衍射的经验,也不了解这方面的最新成果,仅建立了三螺旋模型,还未来得及进一步修正,就被沃森他们捷足先登了。沃森和克里克由于与弗兰克林等人经常讨论问题,最先看到她的那张X射线衍射图,又充分运用了鲍林那形象、便捷的摆弄分子模型的方法,还从数学家和生物化学家那里请教了嘌呤和嘧啶基因之间吸引力的计算和配对的概念,终于建立了一个完美的DNA双螺旋分子结构模型。他们正如牛顿所说的那样,“站在巨人的肩膀上”,去摘取了桂冠。2023-07-26 02:04:351