- 大鱼炖火锅
-
1、涓涓流水[juān juān liú shuǐ] 壅:堵塞。细小的水流如果不堵塞,终将汇合成为大江大河。比喻对细小或刚刚萌芽的问题不加注意或纠正,就会酿成大的问题。
2、彭涓[péng juān] 彭祖和涓子的并称。二人均为传说中的长寿者。
3、涓彭[juān péng] 涓子﹑彭祖的并称。传说中的古代仙人。
涓_成语有哪些
涓_的成语有:涓滴微利,涓涓细流,词不达意。涓_的成语有:涓滴成河,涓涓细流,涓埃之报。2:拼音是、juānài。3:结构是、涓(左右结构)_(左右结构)。4:注音是、ㄐㄨㄢㄞ_。涓_的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】涓埃。喻微末。二、引证解释⒈涓埃。喻微末。引《南齐书·王融传》:“但千祀一逢,休明难再。思策__,乐陈涓_。”三、网络解释涓_涓_,是一个汉语词汇,喻微末。《南齐书·王融传》关于涓_的诗句较能劣涓_关于涓_的词语渊涓蠖_促膝谈心涓滴之劳涓滴微利词不达意涓埃之力涓滴不漏涓埃之微涓滴归公涓埃之功点此查看更多关于涓_的详细信息2023-05-20 01:11:451
根式的定义
若xⁿ=a(n为大于1的正整数),则x叫作a的n次方根,称为根式,记作x=n√a,读作“n次根号a”。在根式中,n叫做根指数,a叫做被开方数,“√”叫做根号。2023-05-20 01:12:032
什么是根式?
带根号的算式2023-05-20 01:12:112
根式的概念
根式的概念如下:根式,是数学的基本概念之一,是一种含有开方(求方根)运算的代数式,即含有根号的表达式。按根指数是偶数还是奇数,根式分别称为偶次根式或奇次根式 。在实数范围内,负数不能偶次开方,一个正数开偶次方有两个根,其绝对值相等,符号相反 。 同次根式根指数相同的根式。只有同次根式才能进行乘、除运算 。同类根式被开方数相同、根指数也相同的根式。只有同类根式才能进行加、减运算 。最简根式当根式满足以下三个条件时,称为最简根式 。①被开方数的指数与根指数互质;②被开方数不含分母,即被开方数中因数是整数,因式是整式;③被开方数中不含开得尽方的因数或因式。 分母有理化分母有理化又称“有理化分母”,是指通过适当的变形划去代数式分母中根号的运算。一般情况下,在进行根式运算及把一个根式化成最简根式时,都要将分母有理化,两个含有根式的代数式相乘,如果它们的积不含根号,我们就说这两个代数式互为有理化因式。2023-05-20 01:12:171
根式的概念
若xⁿ=a(n为大于1的正整数),则x叫作a的n次方根,称为根式,记作x=n√a,读作“n次根号a”。在根式中,n叫做根指数,a叫做被开方数,“√”叫做根号。2023-05-20 01:12:321
根式是整式还是分式
根式是指含有开方运算的算式或代数式.整式是指没有除法运算,或有除法运算但除式中不含字母的有理式.分式是指有除法运算,而且除式中含有字母的有理式.有开方运算,而且被开方数含有字母的代数式叫无理式.而有理式是指没有开方运算,或有开方运算但被开方数不含字母的代数式.所以根式既不是整式,也不是分式.2023-05-20 01:12:381
初中数学根式运算法则公式
很多同学都学习了根式,我整理了一些根式运算法则,大家一起来看看吧。 根式运算法 根式开方法则是根式的运算法则之一,算术根开n次方,把根指数扩大n倍,被开方数不变。非算术根的开方不总是可能的,负数的奇次方根开奇次方时,一般先将给定根式化为算术根后再按法则开方 1.根号2乘以2,把2变成根号4再乘,就是根号4乘根号2,再根号下的2乘以zhi4的积,就是根号8,也可化简写成2倍根号2. 如题:√dao2*2=2√2=√2*√4=√(2*4)=√(2^2*4)=√8 2.根号3乘以根号6就是根号下6乘以3的积,就是根号18,再把18变成9乘以2,因为9可以开根,所以最后化简得出3倍根号2. 如题:√3*√6=√(3*6)=√18=√(9*2)=√3^2*2)=3√2 3.根号32乘以根号25,得出根号800,根号800再化简得根号下的400乘以2的积,400又等于20乘以20,就是20的平方,最后化简得出20倍根号2. 如题:√32*√25=√(32*25)=√800=√(400*2)=√(20^2*2)=20√2 根式高频考点 ①根据字母的取值范围化简二次根式; ②根据二次根式的化简结果确定字母的取值范围; ③利用二次根式的性质求字母(或代数式)的最小(大)值; ④利用平方差公式进行分母有理化的计算求值;再者就是相关最简二次根式、同类二次根式等相关的基础知识考察, 根式性质 在实数范围内: (1)偶次根号下不能为负数,其运算结果也不为负。 (2)奇次根号下可以为负数。 不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。 以上就是一些数学根式的相关信息,希望对大家有所帮助。2023-05-20 01:12:461
根式的知识点
二次根式定义如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式。即:若,则叫做a的平方根,记作x=。其中a叫被开方数。其中正的平方根被称为算术平方根。关于二次根式概念,应注意:被开方数可以是数 ,也可以是代数式。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。最简二次根式最简二次根式条件:1.被开方数的因数是整数或字母,因式是整式;2.被开方数中不含有可化为平方数或平方式的因数或因式。二次根式化简一般步骤:1.把带分数或小数化成假分数;2.把开方数分解成质因数或分解因式;3.把根号内能开得尽方的因式或因数移到根号外;4.化去根号内的分母,或化去分母中的根号;5.约分。二次根式性质1. 任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在。2. 零的平方根是零,即;3. 负数的平方根也有两个,它们是共轭的。如负数a的平方根是。4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。5. 无理数可用连分数形式表示,如:6. 当a≥0时,;与中a取值范围是整个复平面。7.[任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。8. 逆用可将根号外的非负因式移到括号内,如(a>0) ,(a<0),﹙a≥0﹚ ,(a<0)。9.注意:,然后根据绝对值的运算去除绝对值符号。10.具有双重非负性,即不仅a≥0而且≥0。望采纳。2023-05-20 01:12:551
无理式和根式的区别
根式不一定是无理式,例如:√4=2,不是无理式.无理式也不一定是根式,例如:π+3,是无理式,但不是根式.根式是开方,无理式是含有无理数的式子.如果代数式中含有表达式的开方运算,而表达式中又含有字母,则此代数式就叫做这些字母的无理代数式,简称无理式(irrational expression)。无理式与无理数(irrational number)是两个不同的概念,不要混淆。代数式:代数式(algebraic expression)由数字和字母经有限次加、减、乘、除、乘方和开方运算(即代数运算)得到的式子。例如 等都是代数式。代数式分类如下:其中,一项式又称为单项式。无理式:如果代数式中含有表达式的开方运算,而表达式中又含有字母,则此代数式就叫做这些字母的无理代数式,简称无理式。 (我们也可以说,含有关于字母开方运算的代数式,叫做无理式。 )根式是数学的基本概念之一,是一种含有开方(求方根)运算的代数式,即含有根号的表达式。按根指数是偶数还是奇数,根式分别称为偶次根式或奇次根式。设正整数,已知数a,若有数x满足,则称x为a的n次方根,记为当n=2时,记为 ,作为代数式,称为根式,n称为根指数,a称为根底数。在实数范围内,负数不能开方,一个正数开偶次方有两个根,其绝对值相等,符号相反。2023-05-20 01:14:431
根式的性质及运算
根式定义如果x2=a,那么x叫做a的平方根 ;如果x3=a,那么x叫做a的三次方根 。一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*,当n为奇数时,用符合表示,当n为偶数时,用符号±表示,其中式子叫做根式,其中 n叫做根指数,a叫做被开方数。性质(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0.(2)在实数范围内,正数的偶次方根有两个,如16的4次方根是±2,它们互为相反数,0的偶次方根是0,负数的偶次方根没有意义,即n为正偶数时,有意义的条件是a≥0.(3)= ,()n=a.2023-05-20 01:14:491
根式的定义
根式的解释[radical expression] 一种含 根号 的数学表示式 详细解释 含有根号的算术式或 代数 式。 词语分解 根的解释 根 ē 高等植物茎干下部长在土里的部分: 根植 。根茎。根瘤。根毛。根雕。须根。块根。 扎根 。叶落归根。 物体的基部和其他 东西 连着的部分:根底。 根基 。墙根儿。 事物的本源:根源。根由。根本。知根知底。 彻底 式的解释 式 ì 物体外形的样子:式样。样式。 特定的规格:格式。程式。 典礼,有特定内容的仪式:开幕式。阅兵式。 自然 科学中表明某些关系或 规律 的一组符号:分子式。算式。公式。 一种语法范畴,表示说话者对所说事2023-05-20 01:14:571
根式的概念
根式的解释[radical expression] 一种含 根号 的数学表示式 详细解释 含有根号的算术式或 代数 式。 词语分解 根的解释 根 ē 高等植物茎干下部长在土里的部分: 根植 。根茎。根瘤。根毛。根雕。须根。块根。 扎根 。叶落归根。 物体的基部和其他 东西 连着的部分:根底。 根基 。墙根儿。 事物的本源:根源。根由。根本。知根知底。 彻底 式的解释 式 ì 物体外形的样子:式样。样式。 特定的规格:格式。程式。 典礼,有特定内容的仪式:开幕式。阅兵式。 自然 科学中表明某些关系或 规律 的一组符号:分子式。算式。公式。 一种语法范畴,表示说话者对所说事2023-05-20 01:15:151
根式的运算法则
根式的加减法法则各个根式相加减,应先把根式化成最简根式,然后合并同类根式。二次根式加减法法则先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。同类根式亦称相似根式,是代数学术语,指做加减法时允许合并的诸根式,当几个根式化成最简根式后,如果它们的根指数和被开方数分别都相同,那么这些根式称为同类根式。分母为带根号的式子,首先让分母有理化,使分母没有根号,而把根号转移到同次根式相乘(除) ,把根式前面的系数相乘(除) ,作为积(商)的系数;把被开方数相乘(除) ,作为被开方数,根指数不变,然后再化成最简根式。非同次根式相乘(除) ,应先化成同次根式后,再按同次根式相乘(除)的法则。根号的由来:古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根。与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,中古有人写成R.q.4352。2023-05-20 01:15:211
如何根式化简?
上面直接变成4下面是根号十七 分母不能为根号所以上下同时乘以根号17得4根号17/172023-05-20 01:15:512
初中数学开根号怎么开?
你这都不错的了明年我都要高考了还不回开根号呢2023-05-20 01:16:0215
根式的正确怎么读法?
开2次方,直接读根号几;开多次方(大于2),开几次方就读,几次根号几2023-05-20 01:17:431
什么叫根式方程?跟普通方程有什么不同
所谓根式方程就是被开方数中含有未知数的方程,如√(x-1)=2 它的解法是需要平方后变成整式方程,这就使平方后的方程与原方程不同解,因此需要检验.2023-05-20 01:18:021
如何快速求根式的立方根?
没有口诀,但一般要求10以内正整数的平方根的近似数背下来。√1=1√2≈1.414√3≈1.732√4=2√5≈2.236√6≈2.449√7≈2.646√8=2√2≈2.828√9=3√10≈3.162根2:1.414根3:1.732根5:2.236根式乘除法法则:1、同次根式相乘(除),把根式前面的系数相乘(除),作为积(商)的系数;把被开方数相乘(除),作为被开方数,根指数不变,然后再化成最简根式。2、非同次根式相乘(除),应先化成同次根式后,再按同次根式相乘(除)的法则进行运算。根式的加减法法则:各个根式相加减,应先把根式化成最简根式,然后合并同类根式。二次根式加减法法则:先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。2023-05-20 01:18:081
根号里有根,该如何开方呢?
根号里有根,可以想办法将里面的数据完全平方起来,这题你可以把8分解成1+7,这样1-2√7+7就能凑成完全平方(1-√7)²,然后就可以将它开方出来了。把根号里的式子再配出一个完全平方式来,就可以开方了。例如:根号里的式子是:3+2√2,则3+2√2=2+2√2+1=〖(√2+1)〗^2 再开方,即得√2+1当然,过程直接写等号“=”就行了,不用我这样写很多。如果根号是三次、四次,依次类推。根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。扩展资料:在实数范围内,(1)偶次根号下不能为负数,其运算结果也不为负。(2)奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。1、√ab=√a·√b﹙a≥0b≥0﹚ 这个可以交互使用.这个最多运用于化简,如:√8=√4·√2=2√22、√a/b=√a÷√b﹙a≥0b﹥0﹚3、√a²=|a|(其实就是等于绝对值)这个知识点是二次根式重点也是难点。当a>0时,√a²=a(等于它的本身);当a=0时,√a²=0;当a<0时,√a²=-a(等于它的相反数)4、分母有理化:分母不能有二次根式或者不能含有二次根式。当分母中只有一个二次根式,那么利用分式性质,分子分母同时乘以相同的二次根式。如:分母是√3,那么分子分母同时乘以√3。参考资料:百度百科---开平方运算2023-05-20 01:18:201
二次根式计算怎么算?
二次根就是开平方,平方的逆运算。1、二次根式的加减运算:先把式子中各项二次根式化成最简二次根式,再参照多项式的加减运算,去括号与合并同类二次根式。2、二次根式的乘法:(1)法则:根a ·根b =根ab (a≥0且b≥0)(2)类型:(i)单项二次根式乘以单项二次根式;(ii)单项二次根式乘以多项二次根式;(iii)多项二次根式乘以多项二次根式扩展资料:二次根式的应用主要体现在两个方面:(1)利用从特殊到一般,再由一般到特殊的重要思想方法,解决一些规律探索性问题;(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。2023-05-20 01:18:331
证明根式运算法则
√5-1/(√5-2) =√5-(√5+2)/(√5-2)*(√5+2) =√5-(√5+2) =-22023-05-20 01:18:412
数学中对根式书写的要求
根式书写是先写横,再写竖勾,这是正规写法。根式是数学的基本概念之一,是一种含有开方(求方根)运算的代数式,即含有根号的表达式。2023-05-20 01:18:501
什么是“二次根式”
什么叫二次根式?1.根号a表示a的算术平方根2.a可以是数,也可以是式子3.形式上含有二次根号4.a≥02023-05-20 01:18:573
什么是二次根式 二次根式
一般地,形如√a的代数式,叫做二次根式。其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。判断一个二次根式,是否为最简二次根式,主要方法是根据,最简二次根式的定义进行判断,或直观地观察。被开方数的每一个因数的指数,都小于根指数2,且被开方数中不含有分母,被开方数是多项式时,要先因式分解后再观察。任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是√a,则a的另一个平方根为﹣√a。2023-05-20 01:19:041
什么是根式函数 请讲的通俗一点
表达式是根式的函数,叫根式函数.说得更明白一点,表达式里根号下含有自变量x的函数. 如y=√(1-x^2), 又如y=√x+1. 再如y=x^2/3是幂函数, 但是,y=x^2/3=(3)√(x^2)(读作三次根号下x平方) 也可看成根式函数.2023-05-20 01:19:131
根式√½化简
2分之跟号22023-05-20 01:19:203
一元五次方程为什么没有求根公式
一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。求一元五次方程的根式解曾困扰数学家三百余年,阿贝尔和伽罗瓦的工作证明了一般一元五次方程没有根式解。1930 年华罗庚《苏家驹之代数的五次方程式解法不能 成立之理由》一文,是对试图推翻阿贝尔和伽罗瓦证明的一种反驳,也是华罗庚的成名之作。 最近国内学者声称“破解”了一元五次方程。这种“破解”,仅限于一元五次方程根的数值求解。6 世纪,在意大利数学家塔塔利亚(Tartaglia)、卡尔达诺(Cardano)、费拉利(Ferrari)等人的努力下,用根式求解三次方程与四次方程的方法终获解决。这样,利用代数符号,无论是二次方程、三次方程还是四次方程,都能通过根式求出它的一般解。于是,数学家们开始寻找一元五次方程的公式解法。虽屡遭挫折,但人们相信,五次方程的解就隐藏在某个角落。在随后三百多年,破解五次方程成了数学中最迷人的挑战之一,很多数学家和数学爱好者,都把它作为检验自己才能的试金石。可是毫无例外,他们都失败了。五次及以上方程的根式解虽然没有找到,人们却积累了很多的经验和知识,特别值得一提的是法国数学家拉格朗日(Lagrange)。1770 年,拉格朗日发表了《关于代数方程解的思考》,他讨论了人们所熟知的解二、三、四次方程的一切方法,并且指出这些成功解法所根据的情况对于五次以及更高次的方程是不可能发生的。拉格朗日试图得出这种不可能性的证明,然而,经过顽强的努力之后,拉格朗日不得不坦言这个问题“好像是在向人类的智慧挑战”。2023-05-20 01:07:241
数学题x²-3x+1=0?
你真的会解方程吗?今天我们从简单的解方程开始,为大家介绍一位英年早逝的数学家的工作,从这些工作中我们将看到优美的对称性,以及蕴含在其中的和谐奥妙。尼尔斯·亨里克·阿贝尔1824年,一位年轻的挪威数学家尼尔斯·亨里克·阿贝尔取得了一个与某类方程相关的令人震惊的结果。不久之后,法国天才数学家埃瓦里斯特·伽罗瓦以深入的眼光证明了这一结果为什么是正确的——并在这个过程中开创了用数学研究对称性的先河。可惜两人都英年早逝,没有来得及享受他们的工作带来的好处。阿贝尔于1829年死于肺结核和贫困,时年26岁。伽罗瓦死于1832年,他在一场据称是为了争夺一个女人而进行的决斗中被杀死。当时他只有二十岁。那么他们做出了什么样的工作?方程和对称性又有什么关系?解方程Solving Equations最著名的公式之一是二次方程的通解公式,如果方程写为:那么通解公式就可以告诉我们方程的解为:以及无论a,b,c的值是多少,这个公式都可以告诉你解是多少。它们使用起来很方便。这有一个类似的但复杂得多的公式可以告诉你三次方程的通解,方程的形式为:还有一些更复杂的方程可以告诉你四次方程的通解,这些方程可以写为:虽然关于二次,三次,四次方程的通解公式看起来有些复杂,但是它们只包含了有限个运算操作:加、减、乘、除、开平方、开三次方、开四次方。很显然,你接下来会问,我们可以为五次方程找到一个类似的通解公式吗?更一般的,包含x高阶项的多项式方程的通解公式长什么样子?伽罗瓦画像 在他死后16年的1848年,由他的兄弟根据记忆所作我们想要的是一个公式,这个公式只包含加减乘除和求根操作。如果一个方程具有这样一个通解公式,那么我们说这个方程是有根式解的。1824年阿贝尔证明的结论是:对于一般的五次方程,不存在根式解。当然,这并不意味所有的五次方程都是没有根式解的。例如,多项式方程:拥有一个解:。但是对于一般的五次方程,确实不存在一个普适的根式解公式。阿贝尔证明了这一结果,但几年后,伽罗瓦才真正意识到为什么五次方程不存在根式解。伽罗瓦常被认为群论的奠基人,群论是一门研究对称性的数学。 我们通常认为对称性是一种视觉现象:一幅画或图案可能是对称的。但是对称性和方程有什么关系呢?答案有些微妙,但非常美丽。不变的对称性Unchanging Symmetry首先,让我们思考对称性真正的含义。我们说一个正方形是对称的是因为我们将它绕着中心轴旋转90度,或者将它对于各种轴做反射操作并不会改变它的外观。所以对称性意味着没有变化:如果我们对某个物体进行某种操作之后并没有改变它,那么它就具有对称性。当我们思考二次方程式,我们可以发现少许对称性。例如,二次方程拥有两个解方程具有两个离散的解,但是某种意义上,它们非常相似:只需在一个解上加上一个负号就可以得到另一个解。也许交换两个解并不会带来什么不同,就像对正方形做镜像操作一样意味着一种对称性一样,交换方程的两个解也许也意味着某种对称性。但究竟是哪种对称性呢?加入无理数Including Irrationals蝴蝶有对称性,方程也有对称性!为了理解这些结果,让我们考察一下方程所包含的数字:方程的系数是1和-2:两个系数都是有理数。但是它的解却是两个无理数:你无法将和写成两个整数相除的形式。多数二次方程的解都是无理数,因此只考虑方程的系数是不够的。让我们把视野放宽一点。我们不光考察一组有理数(写作),我们还要考察一组新的数,这组数写作。这组数包含所有可以写作的数,其中a和b是有理数。很显然,新的一组数包含所有的有理数(b=0),同时也包含前面二次方程的两个解和。新的一组数是自包含的( self-contained):你可以将其中的两个数相加、相减、乘或者相除,得到的结果仍然在这组数里。在数学中,被称为一个域(field)。在代数操作下的自包含性是域的基本特性。事实上,是包含所有有理数以及和的最小的域。交换两个解Switching Solutions现在我们回到将两个解和进行交换的想法。在中将所有的和进行交换,我们可以用函数f来表示这种交换操作:将f作用在中的所有数上并不会改变也不会改变它的结构。并且,它并不会改变这个域中的所有有理数。很显然,f并不改变域中的有理数,对于无理数,经f作用后仍然处于中。(因为是中的一个数,也是中的一个数)更进一步,将f作用在上保持加减乘除的结构。假设你对中的两个数和进行加、减、乘、除操作得到新的数,然后将和进行加、减、乘、除可以得到。在某种意义上,函数f是方程的一个对称变换。它不会改变。函数f被称为域的-自同构:它是从到自身的双射函数,它不改变中的数并且保持在代数操作下的结构。伽罗瓦群Galois"s Group还有其它的-自同构变换吗?答案是肯定的,其实还有一个-自同构变换,尽管这个自同构变换很平庸。它使中的每个数保持不变。用函数表示就是:。的 -自同构集合(也就是方程的对称性的集合)只包含g和f两个元素。一个事物,无论它是一个图形还是一个方程,它的对称性的集合构成一个群。这个系统是自包含的原因是两个对称变换的组合仍然构成一个对称变换。在我们的例子中,将对称变换f连续两次作用在一个数上不会改变这个数:类似的,先作用f后作用g,或者先作用g后作用f的组合构成了f,而g和g的组合仍然是g。我们的方程的对称性构成的群包含两个-自同构g和f,它被称为方程的伽罗瓦群。为什么你解不出一般的五次方程?Why you can"t solve the general quintic?我们可以对其他任意多项式做类似的事情,例如对一个五次方程:A,b,c,d,e和f是有理数。同样的,我们可以将有理数域扩展成包含和方程的解的最小的域。它被称为的分裂域(splitting field)就像我们对二次方程做的那样,你可以观察一下这个分裂域的对称性。它的-自同构包含不改变域内数字的自同构变换和不改变域的结构的自同构变换,它们构成的伽罗瓦群。纪念伽罗瓦的法国邮票伽罗瓦所能证明的是,一个方程是否有根式解,取决于它的伽罗瓦群的结构。有时候伽罗瓦群可以被分成更小的分量,它们和取n次方根有关。如果是这种情况,那么方程拥有根式解。然而,如果它无法以恰当的方式分被解成更小的分量,如果你不能把对称性分离出来,那么你就找不到一个只涉及加、减、乘、除和求根的通解,在这种情况下,方程不存在根式解。我们可以证明,五次方程并不能以恰当的方式分解。因此,五次方程不存在根式通解。对于包含x的更高次幂的多项式方程也是一样的:它们没有根式通解。用群论研究方程的解被称为伽罗瓦理论,这一理论以其发明者的名字命名。作者:Marianne Freiberger翻译:Nothing审校:C&C原文链接:本文经授权转载自《中科院物理所》微信公众号2023-05-20 01:07:171
“方程无根”与“方程无实数根”的具体区别
方程无根,指的是类似于方程的增根的根,比如方程1/(x+1)+1/(x-1)=2/(x�0�5-1)将方程两边同乘以公分母(x+1)(x-1),得到x-1+x+1=2解得x=1x=1是方程的增跟,故该方程无解就是没有根。 下面来说无实数根。例如方程:x�0�5+5=0分解因式:x�0�5-(-5)=[x+(√5)i][x-(√5)i]此时方程的根为x1=-(√5)ix2=(√5)ii是虚数单位,定义i�0�5=-1 顺便补充,对于任意二元一次方程来说,不存在方程无解的情况,而无解的情况大多存在于分式方程中。2023-05-20 01:07:101
群论 | 群论在物理上的三大应用
群的概念引发自多项式方程的研究,由埃瓦里斯特·伽罗瓦在18世纪30年代开创。在数学中,群表示一个拥有满足封闭性、结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。 就科学内容而言,群论属于数学范畴,在许多数学分支中都有它的应用。它还被广泛用于物理、化学及工程科学等许多领域,尤其是物理学成为受惠最多的学科。从经典物理中对称性和守恒律的研究到量子力学中角动量理论及动力学对称性的探索再到同位旋、超荷和SU(3)对称性在现代基本粒子物理中的应用等无不闪耀着群论思想的光辉。 群论是用来研究系统对称性的数学工具,这些对称性能够反映出在某种变化下的某些变化量的性质。它也跟物理方程联系在一起。基础物理中常被提到的李群,就类似与伽罗瓦群被用来解代数方程,与微分方程的解密切相关。 在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。 群论在物理学上的研究主要体现在以下三个方面: 群是按照某些规律相互联系的元素的集合。在晶体对称理论中,群的元素是对称操作。 DEF 1.点阵:晶体粒子所在位置的点在空间的排列。 2.点群(对称类型):晶体中所含有的全部宏观对称元素至少交于一点,这些汇聚于一点的全部对称元素的各种组合。 3.空间群:晶体内部结构中全部对称要素的集合 。 NAT 1.布拉菲空间点阵只存在14种。 2.前述旋转及旋转一反演对称操作所可能有的三维空问点群共有32种。 3.一切晶体结构中总共只能有230种不同的对称要素组合方式,即230个空间群。 自然界中晶体结构的类型很多,却只可能有14种布拉维格子。群论的引入,使得我们迅速得到一种晶体的所有对称性及这种对称性而得到的宏观物理性质。现实应用中,常从新材料具有哪些对称操作来初步得到材料的物理性质。 物理学中将运动规律的不变性称为“对称性”。在经典的物理学中,主要涉及的是与时间和空间变换相关的对称性。Jacobi等首先注意到经典力学中体系的守恒量与对称性的联系。Noether将变分原理应用到物理学中,证明了Noether定理:对于自然界中每一种对称性,必存在一个相应的守恒定律;反之,对于每一个守恒定律,必对应有一种对称性。 群论是量子力学的基础。从群论的角度解决一些量子力学问题,主要包括哈密顿算符的对称性,距阵元定理和选择定则。运用群论的方法研究量子系统的对称性,可以不通过求解运动方程得到系统许多普遍的精确的性质。 群论方法的特点在于,只要依据的对象的对称性质是严格的,则由它得出的结论必定是精确的、可靠的;特别适当研究者对研究对象不是很了解时,通过对其对称性的分析可以得出一些带普遍性的结论。[3] 参考文献: [1]马中骐, 戴安英, 马中骐,等. 群论及其在物理中的应用[J]. 理论物理室, 1988. [2]朱尧辰. 物理学中的群论[J]. 国外科技新书评介, 1998(11):3-3. [3]张强. 基于群论的对称性与守恒律的新表述[J]. 成都航空职业技术学院学报, 2003(1):11-16.2023-05-20 01:07:011
我已找到一元五次方程的求根公式了
根据 Galois理论,每种方程对应一个伽罗瓦群,这个方程可解,当且仅当这个群可解,而当n大于等于5时,这个群一般是不可解的,这个问题多年前就被证明了。一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。这是某一年的菲尔斯奖。不可能随便说说就解决的。用伽罗瓦理论还可以解决几何三大难题,化圆为方,二体积问题,还有三等分角问题2023-05-20 01:06:541
几阶方程是什么意思
意思是线性系统普遍存在的叠加原理。在数学中会遇到,工程学科里面也会遇到(作为数学理论的应用),比如一阶、二阶电路的全响应=零状态响应+零输入响应。事实上常微分线性方程(组)作拉普拉斯变换后,就变成了代数线性方程(组)。(如果把高阶线性微分方程等价为微分方程组,也可以用线性代数的方法来解,比如对角化之类的)。一部分六次方程可以通过因式分解求解,另一些无法求解。埃瓦里斯特·伽罗瓦发明了一种判断一个六次方程是否可通过因式分解求解的方法,该方法后来发展成伽罗瓦理论。根据伽罗瓦理论,一个六次方程能用根式求解当且仅当它的伽罗瓦群包含于将根的集合划分固定化(stabilize)成两个根的三个子集的48阶群或将根的集合划分固定化(stabilize)成三个根的两个子集的72阶群。2023-05-20 01:06:261
什么是有限域,什么是有限域请举一例
1.有限域是仅含有限多个元素的域。 2.它第一由E.伽罗瓦所发现,因而又称为伽罗瓦域。 3.它和有理数域、实数域比较,有着许多不同的性质。 4.定理:有限域的阶是一个素数的方幂。 5.对于每个素数p和每个正整数居同构的意义下存在惟一的pn阶的有限域,并且所有元素都是方程的根。 6.有限域的乘法群是循环群。 7.有限域是完美域,即它的任何代数扩张一定是可分扩张。 8.有限域的有限扩张一定是伽罗瓦扩张,并且对应的伽罗瓦群是循环群。2023-05-20 01:06:091
天蝎座女想跟男朋友分手前,会怎么样
埃瓦里斯特·伽罗瓦,(1811–1832),IQ=320,法国数学家。现代数学中的分支学科群论的创立者。用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,人们称之为伽罗瓦群和伽罗瓦理论。在世时在数学上研究成果的重要意义没被人们所认识,曾呈送科学院3篇学术论文,均被退回或遗失。后转向政治,支持共和党,曾两次被捕。21岁时死于一次决斗。2023-05-20 01:06:022
一元七次方程求根公式
伽罗瓦可解性定理。伽罗瓦工作的核心部分是可解性判别准则:当且仅当多项式方程的群是可解群(伽罗瓦群),这个方程可用代数的方法求解。2023-05-20 01:05:431
群论,商群的概念是什么?有什么用?
整数关于加法形成一个加法群,现在,我们考虑它们除24后的余数,就像时间一样,今天的一点钟和昨天的一点钟单单就1而言是等价的,所以我们不妨把它们看为同一类元素,也就是说,1和25是等价的,因为它们除24后都余1,这样,我们就把整个整数变成了只有24个元素的有限群,我们分别以1,2...24作为它们的代表元,这24个元素就形成了一个商群。现在让我们把这个概念抽象出来:如果在一个群上定义了一个等价关系,把诸元素分成互不相交的等价类,取其中一个元素作为代表元,则这样形成的群就是商群。再回到一般群中,与单位元等价的元素形成的群记为A,则它是一个正规子群,则商群可以写为aA,bA,cA……故,任意正规子群都能产生商群。至于商群有什么用,你看他把等价元素都弄成一个元素就知道它有什么用了,我们考虑问题时考虑的对象往往是具有某些特殊性质的集合,这些东西可以视为一个东西,商群就可以帮你把它们凝为一体,具体可参考任何一本抽象代数书。2023-05-20 01:05:363
为什么五次以上的方程没有求根公式? 我知道有证明,可以写出来吗?
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,这是对系数函数求平方根.接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法.这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决.他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得.同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得. 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果.1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法.他的工作有力地促进了代数方程论的进步.但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解.并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解.他的这种思维方法和研究根的置换方法给后人以启示. 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善.同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在.随后,他又着手探讨高次方程的具体解法.在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解.因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明. 随后,挪威数学家阿贝尔开始解决这个问题.1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数.并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解.接着他进一步思考哪些特殊的高次方程才可用根式解的问题.在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数.现在称这种方程为阿贝尔方程.其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n.实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解. 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题.法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业. 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手.当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论.在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念.他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统.他从此开始把方程论问题转化为群论的问题来解决,直接研究群论.他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人. 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群.方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题.现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群.一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变.伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域.可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表.更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜.到十九世纪六十年代,他的理论才终于为人们所理解和接受. 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响.http://www.nhyz.org/psz/%CA%FD%D1%A7%CA%B7/buer.html2023-05-20 01:05:161
为什么五次以上的方程没有求根公式?我知道有证明,可以写出来吗
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,这是对系数函数求平方根.接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法.这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决.他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得.同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得.用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果.1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法.他的工作有力地促进了代数方程论的进步.但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解.并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解.他的这种思维方法和研究根的置换方法给后人以启示.1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善.同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在.随后,他又着手探讨高次方程的具体解法.在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解.因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明.随后,挪威数学家阿贝尔开始解决这个问题.1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数.并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解.接着他进一步思考哪些特殊的高次方程才可用根式解的问题.在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数.现在称这种方程为阿贝尔方程.其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n.实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解.阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题.法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业.伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手.当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论.在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念.他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统.他从此开始把方程论问题转化为群论的问题来解决,直接研究群论.他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人.对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群.方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题.现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群.一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变.伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域.可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表.更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜.到十九世纪六十年代,他的理论才终于为人们所理解和接受.伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影2023-05-20 01:05:091
群论解决问题的实例有哪些?
说起群论,就不得不提两个人,他们为这一理论的发展做出来巨大的贡献。 伽罗瓦(1811 - 1832)创立了数学里程碑式的分支,为数学史做出了巨大贡献。伽罗瓦群理论被认为是十九世纪最杰出的数学成就之一。,最重要的是,组织理论的研究开辟了一个新的领域,研究结构计算,而是沉重的变换计算研究的思维方式研究的思维方式,结构概念和分类的数学操作,使集团理论迅速发展成一个新的数学分支,施加一个伟大的影响现代代数的形成和发展。同时,这一理论对20世纪结构主义哲学的物理、化学乃至产生和发展都有很大的影响。 在1849年提出了抽象的集团,但这个概念的价值尚未意识到当时,远远超出绰金时代(绰金)1858年在有限群抽象的定义,这一组置换群的领导,1877年,他提出了一个抽象的有限阿贝尔群。克罗内克(克罗内克)也给出了亚伯尔群的等价定义,他提出了抽象元素,操作,亲密,联想,交换。随着每个元素的逆操作的存在和唯一。他还证明了关于群体的一些定理。1878年,格洛里亚提出一个团体可以被看作是一个普遍的概念。不仅需要对置换群进行排列,而且要实现比排列组更大的抽象群。 所以群论可以用来解释很多的实例。2023-05-20 01:04:222
一般的一元五次方程为什么无公式法求解?
自己察!2023-05-20 01:04:162
用拉格朗日方程求弹簧振子的振动周期
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根x=+,其中p=ba2,q=a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根(n=1)引进了预解式x1+x2+2x3+…+n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。对有理系数的n次方程x+axn-1+a2xn-2+…+an-1x+an=0(1)假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响请采纳答案,支持我一下。2023-05-20 01:04:071
basic与important的区别 是什么 ?
我们知道群论是数学的一个重要分支,它在很多学科都有重要的应用,例如在物理中的应用,群论是量子力学的基础。本课程的目的是为了使学生对群论的基本理论有感性的认识和理性的了解。本课程介绍群论的基本理论及某些应用。 主要内容有:首先介绍群、子群、 群同构的概念及有关性质,这是了解群的第一步。然后较为详细地讨论了两类最常见的群:循环群与置换群,包括一些例题和练习,可以熟悉群的运算和性质, 加深对群的理解。并且介绍置换群的某些应用。 然后对群论中某些重要的概念作专题讨论。首先定义并讨论群的子集的运算;由群的子集的运算,引出并讨论了子群的陪集的概念与性质。定义并讨论了正规子群与商群的概念与性质。借助于商群的概念证明了群同态基本定理, 从而对群的同态象作出了系统的描述。这部分内容是群论中最基本的内容,是任何一个希望学习群论的读者所必须掌握的。并且给出群的直积的概念,这是研究群的结构不可缺少的工具。 最后是群表示论的基本理论及应用,包括矢量空间与函数空间,矩阵的秩与直积,不变子空间与可约表示、shur 引理、正交理论、特征标、正规函数、基函数、表示的直积等的概念。 在群的表示理论之后,就是它在量子力学中的应用,例如从群论的角度解决一些量子力学问题,主要包括哈密顿算符的对称性,距阵元定理和选择定则。从而达到了解群论的基础知识以及有限群的表示理论,为群论在物理学中的应用打下基础的目的。 Group theory is one of the great simplifying and unifying ideas in modern mathematics, and it has important applications in many scientific fields. For example, group theory is the ground of Quantum Mechanics. It was introduced in order to understand the solutions to polynomial equations, but only in the last one hundred years has its full significance, as a mathematical formulation of symmetry, been understood. It plays a role in our understanding of fundamental particles, the structure of crystal lattices and the geometry of molecules. In this unit we will study the simple axioms satisfied by groups and begin to develop basic group theory in an axiomatic way. The aim of the course is to introduce students to the concept of groups, the notion of an axiomatic system through the example of group theory, to investigate elementary properties of groups, to illustrate these with a number of important examples, such as general linear groups and symmetric groups. We give the necessary notations and basic definitions that we use throughout the thesis. First the concept of subclass is defined and discussed, the concept of the coset, the problems group factorization, coset. intersection, and double coset member for the subclass, etc. The content of this part is the most basic content and is necessary to learn for students. An important tool for the study of groups (particularly finite groups and with compact groups) is representation theory. Broadly speaking, this asks for possible ways to view a group as a permutation group or a linear group. A number of attractive areas of representation theory link representations of a group with those of its subgroups, especially normal subgroups, algebraic subgroups, and local subgroups. Representation theory also considers images of groups in the automorphism groups of other abelian groups than simply complex vector spaces; these then are the group modules. (This is a somewhat more flexible setting than abstract group theory, since we move into an additive category); modular representation theory studies the case in which the modules are vector spaces over fields with positive characteristic. At last, the course is on the application of group theory to Quantum Mechanics. We consider a symmetry operation of the system. Symmetry operation transform to the Hamilton operator symmetry, which is associated with the representation matrix. So there is matrix element theorem, and theory choice.方程论是古典代数的中心课题。直到19世纪中叶,代数仍是一门以方程式论为中心的数学学科,代数方程的求解问题依然是代数的基本问题,特别是用根式求解方程。所谓方程有根式解(代数可解),就是这个方程的解由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来的。群论也就是起源于对代数方程的研究,它是人们对代数方程求解问题逻辑考察的结果。本文正是从方程论的发展入手,阐述伽罗瓦群论的产生过程,及其伽罗瓦理论的实质。 一. 伽罗瓦群论产生的历史背景 从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根x= +,其中p=ba2,q=a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根(n=1)引进了预解式x1+x2+2x3+…+n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根Q1(x)与Q2(x)满足Q1Q2(x)=Q2Q1(x),Q1,Q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数Qj(x1),j=1,2,3,…,n,当用另一个根xI代替x1时,其中1〈I≤n ,那么Qj(xI)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xI=Q1(xI),Q2(xI),…,Qn(xI)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性Q1Q2(x)=Q2Q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。二.伽罗瓦创建群理论的工作 伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。1.伽罗瓦群论的创建 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) ,假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式 △1=A1x1+A2x2+…+Anxn,其中AI(I=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) ,该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设F(x)=是 的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△I中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群S(n),S(n)是由n!个元素集合构成的,S(n)中的元素乘积实际上是指两个置换之积。现在把S(n)中的元素个数称为阶,S(n)的阶是n!。 伽罗瓦找出方程系数域中的伽罗瓦群G后,开始寻找它的最大子群H1,找到H1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域R,并且在H1的置换下不改变值,但在G的所有别的置换下改变值。再用上述方法,依次寻找H1的最大子群H2,H2的最大子群H3,…于是得到H1,H2,…,Hm,直到Hm里的元素恰好是恒等变换(即Hm为单位群I)。在得到一系列子群与逐次的预解式的同时,系数域R也随之一步步扩大为R1,R2,…,Rm,每个RI对应于群HI。当Hm=I时,Rm就是该方程的根域,其余的R1,R2,…,Rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程 x4+px2+q=0 (3) ,p与q独立,系数域R添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群G,G是S(4)的一个8阶子群,G=,其中E=,E1=,E2=,E3=,E4=,E5=, E6=, E7=。要把R扩充到R1,需在R中构造一个预解式,则预解式的根,添加到R中得到一个新域R1,于是可证明原方程(3)关于域R1的群是H1,H1=,并发现预解式的次数等于子群H1在母群G中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域R1中添加得到域R2,同样找出方程(3)在R2中的群H2,H2=,此时,第二个预解式的次数也等于群H2在H1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到R2中得扩域R3,此时方程(3)在R3中的群为H3,H3=,即H3=I,则R3是方程(3)的根域,且该预解式的次数仍等于群H3在H2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。 现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=A。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。 他是这样给正规子群下定义的:设H是G的一个子群,如果对G中的每个g都有gH=Hg,则称H为G的一个正规子群,其中gH表示先实行置换g,然后再应用H的任一元素,即用G的任意元素g乘H的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由G 约化到H1)的预解式是一个二项方程xp=A (p为素数)时,则H1是G的一个正规子群。反之,若H1是G的正规子群,且指数为素数p,则相应的预解式一定是p次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群G生成的一个极大正规子群序列标记为G、H、I、J…, 则可以确定一系列的极大正规子群的合成因子[G/H],[H/I],[I/G]…。合成因子[G/H]=G的阶数/ H的阶数。对上面的四次方程(3),H1是G的极大正规子群, H2是H1的极大正规子群,H3又是H2的极大正规子群,即对方程(3)的群G 生成了一个极大正规子群的序列G、H1、H2、H3。 随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。 根据伽罗瓦理论,如果伽罗瓦群生成的全部极大正规合成因子都是质数时,方程可用根式求解。若不全为质数,则不可用根式求解。由于引入了可解群,则可说成当且仅当一个方程系数域上的群是可解群时,该方程才可用根式求解。对上面的特殊四次方程(3),它的[G/H]=8/4=2,[H1/H2]=2/1=2,2为质数,所以方程(3)是可用根式解的。再看一般的n次方程,当n=3时,有两个二次预解式t2=A和t3=B,合成序列指数为2与3,它们是质数,因此一般三次方程可根式解。同理对n=4,有四个二次预解式,合成序列指数为2,3,2,2,于是一般四次方程也可根式求解。一般n次方程的伽罗瓦群是s(n),s(n)的极大正规子群是A(n) (实际A(n)是由s(n)中的偶置换构成的一个子群。如果一个置换可表为偶数个这类置换之积,则叫偶置换。),A(n)的元素个数为s(n)中的一半,且A(n)的极大正规子群是单位群I,因此[s(n)/A(n)]=n!/(n!/2)=2,[A(n)/I]=(n!/2)/1=n!/2, 2是质数,但当n ≥5时,n!/2不是质数,所以一般的高于四次的方程是不能用根式求解的。至此,伽罗瓦完全解决了方程的可解性问题。 顺带提一下,阿贝尔是从交换群入手考虑问题的,他的出发点与伽罗瓦不同,但他们的结果都是相同的,都为了证其为可解群,并且伽罗瓦还把阿贝尔方程进行了推广,构造了一种现在称之为伽罗瓦方程的方程,伽罗瓦方程的每个根都是其中两个根的带有系数域中系数的有理函数。四.伽罗瓦群论的历史贡献 伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。参考文献:M·克莱因.古今数学思想.北京大学数学系数学史翻译组译.上海:上海 科学技术出版社,1980.鲁又文编著.数学古今谈.天津:天津科学技术出版社,1984. 中外数学简史编写组.外国数学简史.山东:山东教育出版社,1987. 吴文俊主编.世界著名科学家传记.北京:科学出版社,1994. Tony Rothman:”伽罗瓦传”,《科学》,重庆,科学技术文献出版社重庆分社,1982年第8 期,第81~92页.2023-05-20 01:03:591
关于群论
是数学的分支2023-05-20 01:03:523
哪个数学家很年轻就去世了,只留下十几道数学题
埃瓦里斯特·伽罗瓦,1811年10月25日生,法国数学家。现代数学中的分支学科群论的创立者。用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,人们称之为伽罗瓦群和伽罗瓦理论。在世时在数学上研究成果的重要意义没被人们所认识,曾呈送科学院3篇学术论文,均被退回或遗失。后转向政治,支持共和党,曾两次被捕。21岁时死于一次决斗。2023-05-20 01:03:331
群论是什么数学
在数学和抽象代数中,群论研究名为群的代数结构。[群]在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群(Lie groups)作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论在数学上被广泛地运用,通常以自同构群的形式体现某些结构的内部对称性。结构的内部对称性常常和一种不变式性质同时存在。如果在一类操作中存在不变式,那这些操作转换的组合和不变式统称为一个对称群。阿贝尔群概括了另外几种抽象集合研究的结构,例如环、域、模。在代数拓扑中,群用于描述拓扑空间转换中不变的性质,例如基本群和透射群。李群的概念在微分方程和流形中都有很重要的角色,因其结合了群论和分析数学,李群能很好的描述分析数学结构中的对称性。对这类群的分析又叫调和分析。在组合数学中,交换群和群作用常用来简化在某些集合内的元素的计算。后来群论广泛应用于各个科学领域。凡是有对称性出现的地方,就会有它的影子,例如物理学的超弦理论。希望对你有帮助哦,亲~2023-05-20 01:03:241
一般5次方程解法
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。 http://www.nhyz.org/psz/%CA%FD%D1%A7%CA%B7/buer.html2023-05-20 01:03:161
为什么五次以上的方程没有求根公式?
笨,有了计算机还用你去算吗?你是学数学的吗?学数学的也不会去算的哦~~2023-05-20 01:03:094
怎样证根5是无理数啊?
用反证法2023-05-20 01:03:004
急求四次方程求根公式(要完整的过程)还有五次方程无求根公式的证明过程
方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方,方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 五次方程无求根公式的证明过程 很复杂 一般人看不懂 如下:从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响2023-05-20 01:02:521
一般一元五次方程有求根公式吗?
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响2023-05-20 01:02:441