- 可桃可挑
-
1.根据多普勒效应,当光源和接收光线的物体有相对运动,而且远离接收光线的物体时,物体收到的光线的频率比实际光线的频率要短,由于红光的频率比蓝光短,所以光源发出的光线在光谱上会向红光的方向偏移,称为红移。
2.当光源和接收光线的物体有相对运动,而且光源靠近接收光线的物体时,物体收到的光线的频率比实际光线的频率要长,由于红光的频率比蓝短,光源发出的光线在光谱上会向蓝光的方向偏移,称为蓝移。
3.不同颜色的光线的频率不同,把不同颜色的光线按频率从小到大(或从大到小)连续的排列起来,就得到光谱。
扩展资料:
1.当一般将星光的红移被视为是宇宙膨胀的证据时,天文学中同样有很多蓝移现象,例如:同在本星系群的仙女座星系正在向银河系移动。所以从地球的角度看,仙女座星系发出的光有蓝移现象。观察螺旋星系时,旋臂朝向地球接近的一端会呈现蓝移(参考塔利-费舍尔关系)。
2.临近太阳系的巴纳德星就是恒星观察的典型例子。还有,蝎虎座BL类星体被推挤出的相对喷流中朝向地球的一支,辐射出的同步加速辐射和韧致辐射都会呈现蓝移。
- 黑桃花
-
多普勒效应是指物体辐射的波长因为光源和观测者的相对运动而产生变化,在运动的波源前面,波被压缩,波长变得较短,频率变得较高 ,在运动的波源后面,产生相反的效应,波长变得较长,频率变得较低 ,波源的速度越高,所产生的效应越大,根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度,恒星光谱线的位移显示恒星循着观测方向运动的速度,这种现象称为多普勒效应。
光是一种电磁波,当光源远离观测者时,接受到的光波频率比其固有频率低,即向红端偏移,这种现象被称为“红移”;当光源接近观测者时,接受频率增高,相当于向蓝端偏移,称为“蓝移”。
- 韦斯特兰
-
红移(red shift)
一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。
光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。
蓝移
就是最大吸收波长向短波长方向。蓝移(或紫移,hypsochromic shift or blue shift)??吸收峰向短波长移动。空间阻碍使共轭体系破坏,??max蓝移,?? max减小。
如-COOR基团,能产生紫外-可见吸收的官能团,如一个或几个不饱和基团,或不饱和杂原子基团,C=C, C=O, N=N, N=O等称为生色团(chromophore)
助色团(auxochrome):本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。
一般助色团为具有孤对电子的基团,如-OH, -NH2, -SH等。
含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光。
- 人类地板流精华
-
有大神解释一下嘛?如果发热物体的光谱是连续的,物体远离时所有光谱都会被拉长,是否可以看作是可见光光谱的平移?如果是平移的话,结果还是不变啊,不会有红移或蓝移现象。
天文学中的红移是什么意思
下面是百度百科词条的解释:“红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的γ射线、X-射线和紫外线等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为“红移”。”我举一个例子,氢原子的最强吸收线在585.6nm处。但如果因为某个天体在远离地球,吸收线会向更长方向的移动,可能变成585.7nm、585.8nm等等的数值,具体视天体的退行速度而定。反之如果因为接近地球标成了585.5nm、585.4nm等等小于基准值的数字,则相应的称为蓝移。2023-07-20 08:30:314
化学中的红移和蓝移是什么意思
含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光,称为“红移”。红移是物体的电磁辐射由于某种原因波长增加的现象。 蓝移,吸收峰向短波长移动。当光源向观测者接近时,相当于向蓝端偏移,称为“蓝移”,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。 蓝移就是最大吸收波长向短波长方向。蓝移(或紫移),当光源向观测者接近时,接受频率增高。2023-07-20 08:30:451
什么是红移?
红移是物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。扩展资料通常引力红移都比较小,只有在中子星或者黑洞周围这一效应才会比较大。对于遥远的星系来说,宇宙学红移是很容易区别的,但是在星系随着空间膨胀远离我们的时候,由于其自身的运动,在宇宙学红移中也会掺杂进多普勒红移。一般说来,为了从其他红移中区别引力红移,你可以将这个天体的大小与这个天体质量相同的黑洞的大小进行比较。类似星云和星系这样的天体,它们的半径是相同质量黑洞半径的千亿倍,因此其红移的量级也大约是静止频率的千亿分之一。对于普通的恒星而言,它们的半径是同质量黑洞半径的十万倍左右,这已经接近光谱观测分辨率的极限了。中子星和白矮星的半径大约是同质量黑洞半径的10和3000倍,其引力红移的量级可以达到静止波长的1/10和1/1000。宇宙学红移在100个百万秒差距的尺度上是非常明显的。但是对于比较近的星系,由于星系本身在星系团中的运动所造成的多普勒红移和宇宙学红移的量级差不多,你必须仔细的区别开这两者。通常星系在星系团中的速度为3000m/s,这大约与在50个百万秒差距处的星系的退行速度相当。参考资料来源:百度百科-红移 (物理学)2023-07-20 08:30:541
红移是什么意思
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因频率降低的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象多用于天体的移动及规律的预测上。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的频率降低都可以称为红移。对于频率较高的γ射线、X-射线和紫外线等波段,频率降低确实是波谱向红光移动,“红移”的命名并无问题;而对于频率较低的红外线、微波和无线电波等波段,尽管频率降低实际上是远离红光波段,这种现象还是被称为“红移”。当光源远离观测者运动时,观测者观察到的电磁波谱会发生红移,所有的波(包括机械波、电磁波和引力波等)都会因为多普勒效应而造成的频率和波长的变化。其中频率降低,波长变长的现象称为红移现象,这样的红移现象在日常生活中有很多应用,例如多普勒雷达、雷达枪,在分光学上,人们使用多普勒红移测量天体的运动,在天体光谱学里,人们使用多普勒红移测量天体的物理行为。这种多普勒红移的现象最早是在19世纪所预测并观察到的,当时的部分科学家认为光的本质是一种波。另一种红移机制被用于解释在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象。红移增加的比例与距离成正比。这种关系为宇宙在膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。另一种红移称为宇宙学红移,其机制为空间的度规膨胀。这机制说明了在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象,其红移增加的比例与距离成正比。这种关系为宇宙膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。另一种形式的红移是引力红移,其为一种相对论性效应,当电磁辐射传播远离引力场时会观测到这种效应;反过来说,当电磁辐射传播接近引力场时会观测到引力蓝移,其波长变短、频率升高。2023-07-20 08:31:271
红移现象的红移现象详解
红移现象说明宇宙膨胀在加速并不确切。宇宙爆炸形成的万有斥力,使我们所在的星系与对面的星系同时外延,双向距离在相同时间内加倍是正常现象,不是加速度。2023-07-20 08:31:582
什么是“红移”?
图片来源于NASA 光的波长大小决定了人眼可以看到不同的颜色。人眼可见的一部分光谱,被称为可见光。 在可见光的红端之外,是波长更长的红外线、微波以及无线电波;在可见光的蓝端之外,是波长更短的紫外线、X射线以及伽马射线。 不同的恒星具有不同的光谱。现在想象一颗恒星相对于地球是静止不动的,从恒星发出固定波长的光。显然,我们接收到的和发射时的波长一样。 如果这颗恒星向我们运动而来,当它发射第二个波峰时离着我们较近,这样两个波峰之间的距离就要比静止时小,而接受到的波长就要比静止时短。反过来,如果恒星离我们越来越远,我们接收到的波长就要比静止时长。 也就是说,恒星离开我们而去时,光谱向红端移动(红移);恒星向我们运动时,光谱向蓝端移动(蓝移)。 图片来源于维基百科 这种现象也被称为多普勒效应,声波和电磁波也包括在内。当一辆车开着警报器向观察者驶来时,波就向高频率位移,波长越来越短;当其离远离观测者时,波就向低频率移动,波长越来越长。2023-07-20 08:32:121
红移是什么
所谓红移就是谱线波长增加的效应.可见光光谱中,红光居于波长最长端,所以在光谱照片上,波长增加看起来是一种“谱线向红端移动”的效果.这就是“红移”一词的来历. 换言之,谱线波长减少就叫做“蓝移”或“紫移”.2023-07-20 08:32:571
红移是什么
红移是光的一种非正常折射现象。看《红移的原理》后后会更清楚:红移的原理要弄清红移的原理应该先弄清光折射的原理。光折射是由光和物质间的相互作用力导致光运动方向和速度发生改变。1.红移光与正常光的不同点:红移光在真空中的速度大于正常光在真空中的速度;红移光在介质中的速度大于正常光在介质中的速度;红移光在介质中平行于界面的速度大于正常光在介质中平行于界面的速度;红移光在介质中的折射角大于正常光在介质中的折射角;红移光在介质中垂直于界面的速度等于正常光在介质中垂直于界面的速度;红移光在介质中折射率小于正常光在介质中的折射率;2. 先看投入水中石子的折射情况:石子的运动方向与水面的入射角度在相同的情况下,不同速度的石子在水中瞬间折射的多少不相同。速度高的石子折射的少,速度低的石子折射的多,如图所示:蓝色方块示一箱水,红线AO示石子投入水面前的运动路线,OB示高速石子在水中运动的路线,OD示低速石子在水中运动路线。3.我们再看正常光的折射:我们平时所说的光是一种质量和体积非常小运动速度比较高的物质体。光的折射如图一所示: 该图是光折射实况缩小了约100亿倍示意图,速度为30万公里每秒光在介质内外各有一秒钟的行程,绿色长方体示绝对折射率n=1.5的透明介质,黑线L示法线,红线示光由A点以90度入射角射至点O,经O点折射至B,蓝线示光的余速度V余,黄线Vs示光在介质中平行于界面的速度,Vh示光垂直于界面的速度。光在O点附近和介质间有两种较明显的相互作用力效应。3.1其中一种相互作用力是“动斥力”作用:无论光以何种角度射入介质都会和介质发生同样大小的“动斥力”相互作用(都须要做同样大小的入射功),光射入介质后速度都要降低。由图看出光进入介质后平行于界面的速度仅剩下V余=VS=C/n2=1.333 X10^8米/秒,光损失的速度为V2入功=7.22 X10^16米2/秒^2,光进入介质与磁体进入闭合的电磁线圈的过程相似,它们都要和对方发生“动斥力”相互作用,都要做入射功,都要降低入射速度。3.2光在O点和介质的另一种相互作用力是光和界面间的相互引力:如图二所示:该图是约放大30万倍的示意图,OC线在界面上方约为千万分之一米处,是光原来运动方向,光原来没有垂直于界面的运动速度,光在介质中垂直于界面的速度由光和界面间的引力作用产生,Vh2=C2(n2-1)/n4,由此得正常光折射前后的数据为:设光速为C=3 X10^8米/秒,光在介质中速度为V=2 X10^8米/秒,光平行于界面速度为VS=sin900 V余=1.33 X10^8米/秒,正常光垂直于界面的速度为了Vh=1.4907 X10^8米/秒,光折射率等于介质绝对折射率n=1.5。4.我们再来看高速光折射(看红移)的原理:4.1高速光和介质间的动斥力相互作用力对光运动速度的影响:如图三所示。绿色长方体示绝对折射率n=1.5的透明介质,黑线L示法线,红线示光由A点以90度入射角射至点O,经O点折射至B,蓝线示红移光的余速度V余红,黄线VS红示光在介质中平行于界面的速度,Vh红示光垂直于界面的速度。设:红移光的速度是正常光速度的两倍,为60万公里每秒。V2余红= C2红- V2入功,VS红=sin900V余红=5.36449X10^8米/秒。V2红=V2S红+V2h红V红=5.56 X10^8米/秒4.2高速光垂直于界面的速度。如图四所示,该图也是约放大30万倍的示意图,OC线距离界面设为h=10^-7 米(千万分之一米)。高速光原来也没有垂直于界面的运动速度,光在介质中垂直于界面的速度是光和界面间的引力作用产生的,由图四可以看出平行于界面运动的光,不论速度如何,光和界面间的引力产生的速度都相等,即Vh红=Vh=1.49 X10^8米/秒。4.3依公式V2h红= C2红(N2-1)/N4 =Vh2=C2(n2-1)/n4,求得红移光的实际折射率为N=1.034785.比较红移光和正常光折射前后的相关数据:5.1红移光在真空中的速度设为C红=6 X10^8米/秒大于正常光速度C=3X10^8米/秒。5.2红移光在介质中速度为V红=5.56 X10^8米/秒大于正常光在介质中的速度V=2X10^8米/秒。5.3红移光在介质中平行于界面速度为VS红=5.36 X10^8米/秒大于正常光在介质中平行于界面的速度VS=1.33 X10^8米/秒。5.4红移光在介质中垂直于界面的速度为Vh红=1.49 X10^8米/秒等于正常光在介质中垂直于界面的速度Vh。5.5红移光实际折射率为N=1.03478 X10^8米/秒小于正常光的折射率n=1.5。2023-07-20 08:33:161
红移是什么
书里说红移是频谱搬移,红移我的观点是折射的缘故。太空不是纯粹的真空,有粒子分布,2023-07-20 08:33:263
红移是怎样产生的?具体指什么?
所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。换句话说,由于多普勒红移现象的存在,从这个意义上来讲,宇宙不是无限的,而是有界的,即天体红移的速度等于光速的地带就是宇宙的边缘和界限了,超过了这个界限,也就超过了光速,光线也就因此永远无法达到我们的视界,那就不是我们这个世界了,到底是怎样只有上帝才知道。现在,根据科学测定,宇宙的年龄大约是150亿年,这个既是它的年龄(时间),其实也是它的空间长度,即150亿光年是我们观察太空理论上能达到的最远距离了,我们现在看到的距离地球150亿光年的地方恰恰就是宇宙诞生时的镜像。150亿年前,在大爆炸的奇点,时间和空间获得的最完美的统一,那一点(或那一刻)即是我们整个宇宙的开端2023-07-20 08:33:411
化学中所谓的红移指什么?
物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离2023-07-20 08:33:553
如果光速不变原理是正确的,那为什么光会产生红移
实际上是光速变化,因为发光源没变,光的频率不可能变,只是你看到类似于频率变了的感觉,实际上是你相对于光的相对速度变了2023-07-20 08:34:042
光线红移和蓝移的区别。
你说得很对,这个是不用涉及太多宇宙观的。其实它只不过就是光学领域的“多普勒效应”。红移蓝移指的是光颜色(光谱)的变化,不是亮度、照度、光通量之类的变化。当A和B两个物体(如:两颗恒星)相互远离(远离速度非常快)时,它们相互看到对方发出的光会偏红。因为,根据量子学,光不是连续的,而是一份一份向外发射的,每一份被称为一个光子。假设,眼睛每隔1秒收到一个光子,我们就会看到蓝光,而每隔2秒收到一个光子,我们就会看到红光,那么,本来AB两个物体相互发出的是蓝光,即每1秒收到对方1个光子,但是,由于它们相互远离(高速,或者近光速),所以,它们收到对方光子的产生了时延,要每2秒才能收到1个光子,所以,它们就误以为相互发出的是红光。这样,所谓“红移”就产生了。蓝移则是相反的原理。2023-07-20 08:34:142
红移效应的红移分类
物体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。第一类红移 多普勒红移当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。第二类红移 宇宙学红移它由于宇宙空间自身的膨胀所造成的,例如遥远星系离我们远去。这并不是因为星系在空间运动,而是星系之间的虚无空间(严格说是时空)在膨胀。第三类红移 引力红移当火箭在引力场中向上运动时,它损失能量并减速。但光不可能减速;光永远以比300,000公里每秒小一点点的同一速率c传播。既然光损失能量时不减速,那就只有增加波长,也就是红移。发现者是哈勃。为了纪念他这个伟大贡献,所以以他的名字命名太空望远镜。2023-07-20 08:34:211
紫外光谱红移和蓝移的原因具体是什么
红移是因为波长变长(距离变大),蓝移是变短(距离变小)2023-07-20 08:34:374
引力红移是什么意思啊?
引力红移,是强引力场中天体发射的电磁波波长变长的现象。由广义相对论可推知,当从远离引力场的地方观测时,处在引力场中的辐射源发射出来的谱线,其波长会变长一些,也就是红移。2023-07-20 08:34:483
红移现象(开普敦)
接收到的星系光波波长增加(频率下降)。------就如同听到的从身边开过远离你的火车笛声变低一个道理。2023-07-20 08:35:102
红移的原理
宇宙学红移绝对不是多普勒效应!有的书上这样说,也是一种误导。2023-07-20 08:35:224
“哈勃红移”...指的是什么...?
哈勃红移 就是光的多普勒效应。举例说明,当你用望远镜观察一个高速远离地球的天体时,它的光谱(说白了就是颜色)就要向红色方向移动,就是红移;当观察一个高速靠近地球的天体时,它的光谱就要向蓝色方向移动,就是蓝移。在举一个例子,我们现在看太阳是黄白色的,如果太阳高速远离我们,我们看到太阳的颜色就会变成橙红色,这就是红移了。 红移——红 橙 黄 绿 青 蓝 紫——蓝移 哈勃定律 Hubble"slaw 1929年,E.P.哈勃发现河外星系视向退行速度v与距离d成正比,即 v=Hd 这个关系称为哈勃定律,又称哈勃效应。式中 H 称为哈勃常数。哈勃定律中,v以千米/秒为单位,d以百万秒差距为单位,H的单位是千米/(秒·百万秒差距)。哈勃定律有着广泛的应用,它是测量遥远星系距离的唯一有效方法。只要测出星系谱线的红移,再换算出退行速度,便可由哈勃定律算出该星系的距离。哈勃定律中的速度和距离不是直接可以观测的量。直接观测量是红移和视星等。因此,真正来自观测、没有掺进任何假设的是红移-视星等关系。在此基础上再加上一些假设,才可得到距离-速度关系。 早在1912年,施里弗(Slipher)就得到了“星云”的光谱,结果表明许多光谱都具有多普勒(Doppler)红移,表明这些“星云”在朝远离我们的方向运动。随后人们知道,这些“星云”实际上是类似银河系一样的星系。 1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。现代精确观测已证实这种线性正比关系 v = H0×d 其中v为退行速度,d为星系距离,H0为比例常数,称为哈勃常数。这就是著名的哈勃定律。 哈勃定律揭示宇宙是在不断膨胀的。这种膨胀是一种全空间的均匀膨胀。因此,在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大。2023-07-20 08:35:451
关于红移 为什么离我们越远的星系(或星球)远离我们的速度就越快?
恩.应该跟吹气球差不多吧~ 星体所在的位置越接近与宇宙边缘,其受到的宇宙膨胀的带动力就越大.就像吹气球一样,如果一个东西放在靠近离气球中心很近的地方(假设它能悬浮起来),它又会以怎样的速度向前进军?其实,如果仅仅是气球,放在气球外部的东西和放在内部的东西在气球膨胀时的移动速度的微小差距是无法察觉的,只有在浩大的宇宙之中,才能发现宇宙膨胀的推动力量对于近远物体的影响力是明显不同的.就算是一光秒,在宇宙中甚至连一粒原子都不如.就算我们离宇宙的中心有几千光秒,也无法使我们的移动速度与宇宙边缘的星体相比拟.因此,相比起来,较远的星体的移动速度就要比离宇宙中心近的星体移动速度要快.更何况相比起吹气球的力量和宇宙膨胀的力量,当然是宇宙膨胀能使星体移动更快一点. 至于红移的成因嘛,很简单,因为红光的波长是色光之中最长的,而只有红光才能应付从宇宙边缘到地球的遥远距离.所以,那些星星的光谱只能呈红色啦.当星体距离我们越远时,其光谱中的"杂质光"就会越来越少,光谱也就越红啦. 顺便说一下,蓝移和紫移也是一种比较典型的恒星光谱现象.由于蓝和紫的波长较短,因此发出蓝光谱和紫光谱的星体一般是离我们比较近的星体.2023-07-20 08:35:521
红移波长变大还是变小
红移波长变大。红移在物理学和天文学领域,指物体的电磁辐射由于某种原因频率降低的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象多用于天体的移动及规律的预测上。 多普勒红移 1.由于多普勒效应,从离开我们而去的恒星发出的光线的光谱向红光光谱方向移动。 2.一个天体的光谱向低频(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使频率降低。因为红光的频率比蓝光的低,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。 3.在高光谱遥感领域的红移。在植被的光谱曲线中,遭胁迫的植物的红-红外透射曲线向更低频率方向移动(Cibula和Carter,1992)的现象称为“红端偏移”简称“红移” 引力红移 引力红移,是强引力场中天体发射的电磁波频率降低的现象。由广义相对论可推知,当从远离引力场的地方观测时,处在引力场中的辐射源发射出来的谱线,其频率会降低一些,也就是红移。只有在引力场特别强的情况下,引力造成的红移量才能被检测出来。引力红移现象首先在引力场很强的白矮星(因为白矮星表面的引力较强)上检测出来。二十世纪六十年代,庞德、雷布卡和斯奈德采用穆斯堡尔效应的实验方法,测量由地面上高度相差22.6米的两点之间引力势的微小差别所造成的谱线频率的移动,定量地验证了引力红移。结果表明实验值与理论值完全符合!2023-07-20 08:35:591
宇宙在膨胀,“红移”和“蓝移”到底是什么东西?
一辆鸣着喇叭的车从我们身边经过,我们会感受到音调的变化,因为声音源在不断靠近或远离我们的耳朵,从而对声波产生了影响。在宇宙中,其他的天体不会向地球传递声音,但却可以向地球传递光。如果一颗恒星距离地球越来越远或越来越近,光的波长也会产生变化,从而影响光的颜色。恒星远离我们时,光的波长变长,移向光谱的红色端;恒星靠近我们时,光的波长变短,移向光谱的蓝色端。声音和光:声音的波长变化效果,最早在1800年被提出,由于光也有波长,这意味着光也能和声音一样产生波长的伸展和收缩。由于光的速度是声音的100万倍,因此只有快速移动的物体才能出现红移或蓝移。通过1929年的观测,科学家发现几乎所有的星系都在远离,这种现象让科学家提出了宇宙膨胀的想法。美国天文学家哈勃,第一个将宇宙红移现象和宇宙膨胀联系到一起,哈勃望远镜的明星就是为了纪念这位科学家。通过观察宇宙的红移现象,科学家发现星系距离地球越远,远离的速度越快。红移不但发生在宇宙中的其他星系,也发生在星系内部。通过多年的观察,天文学家红移主要分为3种——宇宙膨胀导致的红移、星系之间的相互远离产生的红移、星系内部的物质移动导致的红移。红移帮助科学家了解宇宙:红移具有非常显著的测距效果,通过红移现象,2011年,科学家发现了有史以来最遥远的物体,距离地球大约131.4亿光年,宇宙大爆炸大约发生在138亿年前,这意味着最遥远的物体距离大爆炸仅有几亿年。2016年,科学家发现最遥远的星系GN-z11,通过测量红移,科学家可以衡量宇宙的大规模结构,让平面的宇宙照片变成立体的图像。红移现象在宇宙范围内更为明显,但是也可以在细小的变化中找到红移。爱因斯坦提出引力波概念后,科学家就希望通过引力波信号找到微弱的红移效果,从而可以通过红移现行计算出物质的引力,进而判断其质量。宇宙不断变大,会超越光速吗?推动宇宙加速膨胀的能量,是一种未知的力量,目前被统称为暗能量。暗能量与万有引力相反,会不断提供排斥力推动宇宙加速膨胀。如果暗能量一直提供排斥力,那么宇宙的膨胀加速就会一直进行,最终有可能超越光速。当宇宙中的所有天体都以光速远离,那么光将再也无法到达地球,红移现象也会完全消失,宇宙的秘密或许永远都无法揭开。2023-07-20 08:36:081
红移现象的意义
红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。换句话说,由于多普勒红移现象的存在,从这个意义上来讲,宇宙不是无限的,而是有界的,即天体红移的速度等于光速的地带就是宇宙的边缘和界限了,超过了这个界限,也就超过了光速,光线也就因此永远无法达到我们的视界,那就不是我们这个世界了,到底是怎样只有上帝才知道。现在,根据科学测定,宇宙的年龄大约是150亿年,这个既是它的年龄(时间),其实也是它的空间长度,即150亿光年是我们观察太空理论上能达到的最远距离了,我们现在看到的距离地球150亿光年的地方恰恰就是宇宙诞生时的镜像。150亿年前,在大爆炸的起点,时间和空间获得的最完美的统一,那一点(或那一刻)即是我们整个宇宙的开端。光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。2023-07-20 08:37:131
宇宙中最明亮的天体有多重红移吗?
绝大多数类星体都有非常大的红移值(用Z表示)。类星体3C273(QSO1227+02)的Z=0.158,远远超过了一般恒星的红移值。有不少类星体的红移值超过了1,有的甚至达到4以上,至今发现的最远的类星体为ULASJ1120+0641,其红移达到7.1。根据哈勃定律,它们的距离远在几亿到上百亿光年之外。观测发现,有的类星体在几天到几周之内,光度就有显著变化。因为辐射在星体内部的传播速度不可能快于光速,因此可以判定这些类星体的大小最多只有几“光日”到几“光周”,大的也不过几光年,远远小于一般的星系的尺度。迄今为止,观测到的最大红移为3.53(OQ172)。对于有吸收线的类星体来说,吸收线红移z吸一般小于发射线红移z发。有些类星体有好几组吸收线,分别对应于不同的红移,称为多重红移。根据以上事实可以想到,既然类星体距离我们如此遥远,而亮度看上去又与银河系里普通的恒星差别不大,那么它们一定具有相当大的辐射功率。计算表明,类星体的辐射功率远远超过了普通星系,有的竟达到银河系辐射总功率的数万倍。而它们的大小又远比星系小,这就提出了能量疑难,也就是说:类星体如此巨大的能量从何而来?2023-07-20 08:37:271
空间没有膨胀,红移是光传播时“疲劳”造成的,这种说法靠谱吗?
遥远的星系在我们地球上看来其所发出的光向光谱的红端发生了移动,这个观测结果是20世纪最伟大的发现。 如果用多普勒-菲索效应解释的话,就会得出来一个惊人的结论,宇宙中的星系在快速的远离我们。 并且根据哈勃在1929年发现的哈勃定律来看,星系远离我们的速度和其与地球的距离成正比。就说明星系的远离并不是星系真的在空间中移动,而是宇宙的空间在膨胀。 这个结论正是爱因斯坦广义相对论下一个各向同性、均匀宇宙的一个解,根据这个解继续沿着时间轴反向推论的话,宇宙标准模型大爆炸理论就诞生了。 沿着时间轴往前推论的话,我们大致就能猜测出宇宙未来的结局。 你看,一个星光的红移现象的发现,直接引发了宇宙学革命。可以说这个发现是现代宇宙学的根基。 如果用另外一种方式去解释星光为什么红移,那么整个宇宙学大厦就会瞬间倾塌。 不知道你有没有想过这个问题,宇宙范围如此之广,动辄数十亿、数百亿光年,这样的距离令我们惊呼,那么星系发出光以后,会不会是因为光在如此远的距离传播的途中,自行损失了能量,而发生了红移? 并非是星系远离我们,或者是空间在膨胀的原因造成的呢?也就是说红移的这个现象不再用多普勒-菲索效应解释,而光能量的自行衰减造成的。 如果事实真是如此,那么我们宇宙就没有膨胀,也没有所谓的大爆炸起源。 这是个颠覆性的想法,你没有想过这个问题也不打紧,因为在 历史 上,也就是1929年,哈勃发现哈勃定律的同一年 茨威基 就提出了这样的看法。 茨威基 就是那个最早发现星系团中星系运动速度异常的科学家,他也是第一个发现星系团中质量缺失的人,为暗物质问题的提出做出了贡献。 他认为星系的红移并不是空间膨胀造成的,而是因为距离太远,星光传播的时候疲劳了,也就是损失了能量,在被我们接收到以后我们就看到了星光红移,然后误以为这是多普勒-菲索效应造成的,才得出了宇宙在膨胀的结论。 这个观点在当时被称为“光纤老化”问题,既然有不同的学说,那么科学家自当会认真对待,去检验茨威基的说法。 首先第一个问题就是光线如何损失能量。 我们知道能量守恒这件事在宇宙中的任何事物、任何位置、任何时间上都是成立的,一个物体在没有和其他物体发生相互作用的时候,他所固有的运动状态是不会发生改变的。 假如,你现在在深邃的太空中,给你一个初始的动量,只要没有其他物体对你产生影响,不管是引力作用、还是电磁作用,你都会保持这个初始的动量一直运动下去。 光也是一样的,要是没有任何东西影响光子,光的性质(波长、频率)也不会发生变化。唯一能让光在传播的时候自行丢失能量,也就是 茨威基 所说的光跑着跑着给疲劳了; 只有光在传播的时候跟宇宙中间中弥散的气体、尘埃发生了电磁相互作用,不管是被散射、还是被吸收后再发射,都包含在可能的相互作用之内。 那么这时光就损失了能量,确实会发生红移,不需要宇宙膨胀。但是这样的相互作用会产生另外一个效果:你看,光被吸收再发射、散射,就会引起遥远天体的影像完全变得模糊不可辨认。 也就是说,只要我们观察到一个星系的光谱有红移,那么这个星系的光在传播的时候就与星际物质发生过相互作用,我们就不能再辨认出这个星系的细节了。 同理,人类也别想看清楚任何遥远星系的任何细节,看到的都是一团模糊的光斑。 但真实的情况是这样的吗?相信你已经猜出来了,哈勃望远镜拍出了很多遥远星系的影像,这些星系的星光都发生了红移,而且我们也完全能看清星系结构的详细细节。 上图是NGC6217,距离我们6千万光年,细节如此清晰。如果这个星系发出的光跟宇宙中的其他物质发生了相互作用,那么这个星系在我们眼里就会模糊成一个大光斑。 上图是 斯蒂芬五重星系 ,这些星系距离我们平均在2亿光年左右,光谱出现了红移,但是细节也是相当的惊人。 “光线老化”其他与观测事实相悖的还有,如果如果宇宙没有发生膨胀,那么我们就观察不到遥远天体的“时间膨胀”效应。 空间膨胀的话,光的波长被拉长丢失能量,那么我们观察到这些光线的时候就会因为光波的变长,而出现延时效应。 如果光线只是跟其他物质发生了作用而丢失能量的话,就没有所谓的时间膨胀效应。 事实恰恰与“光线老化”语言的相反,我们可以通过观察距离不同的1a型超新星,就会发现距离较近的超新星相比于距离较远的超新星,爆发时亮度从亮起到暗淡下去所用的时间较短。 这说明远处的1a型超新星在我们看来明显发生了时间膨胀效应。这也说明了空间在膨胀。 上图是赛弗特六重星系,其实这个结果的成员正儿八经的只有四个,有一个已经被其他星系通过引力拉的解体来。 还有一个就是正面朝向我们的那个星系,看起来非常小,原因是它相比于其他星系距离我们非常远,至少是其他星系五倍的距离。 但是这个星系看起来也具有详细的细节,而且我们在其中也观察到了具有时间膨胀效应的事件。 不可否认,光传播的时候是会与星际介质发生作用,损失能力,但其微小程度可以忽略,它更不能称为解释星系光谱红移的原因。 更加否认不了宇宙空间在膨胀的事实,也更加无法撼动以爱因斯坦广义相对论为基础的新宇宙学模型。 所以说,星光的红移还必须得用多普勒-菲索效应来解释!2023-07-20 08:37:351
什么是星系光谱线的红移
谱线红移 可能存在三中形成宇宙谱线红移的原因,即:宇宙学效应、多普勒效应、康普顿效应,本文从理论上提出鉴别那一种是形成主要原因的方法。并针对试验的可能性的结果提出对宇宙观念的可能性影响。 --------------------------------------------------------------------------- (文中缺失的图片见参考资料) 一、引言 1、牛顿力学导致的宇宙观念 在牛顿力学中,由于基础性的定义来自于牛顿运动定律,因此对于宇宙的观念存在着一定的局限性,主要表现为如下的方面: 牛顿第一运动定律决定了物质的存在属性——惯性。所有的物体在不受到外来作用的时候都将会保持它本身的运动状态。这样的一条规律推广到整个的宇宙,决定了宇宙的存在状态。当然,单靠这一点还是不够的,牛顿第二运动定律和牛顿第三运动定律可以推出动量守恒定律。根据动量守恒定律和牛顿第一运动定律就很自然的推出宇宙的状态了,即:在宇宙的宏观上,无边无际,各向均匀同性。这样的一种宇宙观念在相对论宇宙观念建立之前得到了一种认同。通常将这种观念叫做无限宇宙论。 物质的本身除了惯性之外,还存在另外一种属性,这种属性就是所有的物体之间都存在一种引力——万有引力。牛顿所建立的万有引力定律确定了物体之间的作用规律,这个作用规律在解决宇宙的问题上和牛顿运动定律的本身发生矛盾。如果宇宙是有限的,那么,物质间由于万有引力的作用,最终会所有的物质会由于万有引力的作用而凝聚到一起。如果宇宙是无限的,那么均匀分布在无限宇宙空间中内部区域的这些物质之间的万有引力的作用,则会互相抵消。但是,这导致了另一个问题,所有万有引力的叠加会导致引力势为无限大,这就是Neumann-Seeliger佯谬。在理论计算上,由于处理方法的局限性,必须引入处理区域边界的模式,因此,理论上的这种假设宇宙无限模式是无效的,或者说这是数值计算模式的局限性。这个问题体现了经典力学先天固有的不足。 在传统的观念中,关于均匀、静止、无限的宇宙的另一个矛盾则是奥伯斯佯谬,即:假设天体的光度为,以密度n均匀分布,则天空背景的亮度ι为 这样就出现了天空背景无限亮的矛盾。实际上,这个矛盾是不存在的。因为在采用上面的处理方法忽略了一个重要的问题,就是恒星发出的光与距离的关系。我们知道,光照强度同光源距离的平方成反比,这样的一个关系导致了奥伯斯佯谬不能成立。 2、相对论导致的宇宙观念 光作为宇宙信息很早就引起人们的注意,在光的传播问题上,十九世纪的麦克斯韦在解释电磁理论的基础上,提出了在宇宙空间中存在以太海的假设,但是在人们采用试验的方法来验证以太的存在时,比如比较有名的麦克尔逊——莫雷实验,却不能得到以太存在的证据。这说明采用十九世纪以前经典的力学方法不能对电磁理论关于光的传播问题很好的进行解释,或者更进一步说,经典的力学和电磁理论是不兼容的,采用试验的方法客观事实不支持这样的结论,至少在十九世纪是这样的。 爱因斯坦在当时的经验事实的基础上,(主要是根据如下的两点假设,第一光速与光源的运动无关,第二,人们采用各种方法测量到的光速为一近似常数的结论)提出光速为一常数并且与惯性参照系无关的结论。并进一步提出所有物体的运动速度不能超过光速,将光速设定为物体运动的极限速度。这通常叫做狭义相对论的光速不变原理。通过这个途径,建立了电磁理论的联系。这实际上是建立了关于宇宙中物体的运动和定量的一种关系,或者说宇宙中物体的描述状态的关系。当然,仅凭这一点还是不够的,因为在定量的过程中还存在定量体和被定量体,这一点是通过惯性系来实现的,即通常所说的狭义相对论的相对性原理。 狭义相对论的相对性原理实际上是伽利略相对性原理,在原理所表述的内容上几乎是没有区别的。即:关于力学定律在所有惯性参照系中都是相同的原理。或者更进一步的说,是牛顿运动定律扩展到描述系统的应用情况。 另一方面说明,牛顿力学规律的普适性,在相对论中兼容了牛顿力学规律。在狭义相对论中,惯性参照系普遍的定量规律为推广到宇宙的定量状态打下了一个伏笔。 前面我们知道,物质本身的属性存在两种属性,一种属性是惯性,爱因斯坦通过惯性和光速不变原理建立了狭义相对论描述惯性系的基础。另一种属性则是万有引力,那么万有引力又是通过什么来进行描述的呢?下面我们来看这个问题。 物质本身所具有的万有引力和物质作用的关系,其本身是一种经验约定,在这个关系上,经典的牛顿力学采用平方反比定律来对这个问题进行描述。爱因斯坦则另辟小径,通过加速度和引力的等效模式来进行等效处理,或者说惯性质量等效于引力质量。如果说狭义相对论是处理惯性系的问题,那么广义相对论则是处理非惯性系参照系的问题。在广义相对论存在的问题——原理上的问题 中,我们已经讨论了这个问题惯性质量和引力质量是不需要采用等效的模式来进行经验约定的,它们本身都是力学的定义系统。在广义相对论中还包括另一种涵义,这种含义就是通过等效的模式建立狭义相对论和广义相对论之间在观念、范围、描述模式上的联系,在和狭义相对论相等效的模式上,物体在不同惯性参照系中切换的过程中(变速运动),形成时间和空间的变率,如果是变速运动是稳定的,比如角动量为均匀的旋转系,那么时间和空间的变率也是相同的。我们知道,变速运动等效于引力,这使得广义相对论具有相似的描述模式,甚至可以进行等效切换。在数学上采用曲率张量来进行描述,引力系统的引入使得数学上的空间弯曲成为一种形象的描述模式。 在一个引力系统所造成的空间曲率描述中,无疑会形成一种以引力源为中心的中心对称。那么,如果将整个的宇宙系统当作一个引力系统,无疑将是一个球形。如果宇宙的物质分布是均匀的,那么将会得到一个准球形。 相对论的理论毕竟是理论,下面我们来看关于现代的宇宙理论以及客观事实是否支持这样的结论。 二、“膨胀”宇宙的发现 关于宇宙膨胀的观念主要来自于对星体距离的测量上,采用几何学三角测量的方法,以地球长轴为基线所测定的极限距离不超过150光年,利用某一期间的角位移和谱线得多普勒效应来对星团自转求线速度的方法,其测定出的距离不超过三千光年,超过这个极限则利用造父形脉动变星的距离测量法,即知道天体的绝对亮度和标准光源进行比较即可。1914年前后,V.M.Slipher根据谱线红移发现了几个大于10的三次方千米/秒的速度离开我们的天体。大约有过了十年,哈勃测定了这些天体的距离,结果证明这些天体是一些距离在10的7次方光年以上的遥远的星系。但是,如果恒星的距离太远,则不能分辨和看到,对这种情况,有的以星系内最亮的恒星作为标准,有的只能以星系整体亮度作为标准尽可能的确定更多的星系的距离和红移,经过整理,1922年哈勃发现具有巨大红移的星系,其退行速度和距离成正比。其中,为哈勃常数,其值为,他认为这是由于宇宙的均匀的膨胀而造成的。 后来利用二战后发展起来的射电望远镜是观测的范围更加扩大,可是由于射电波几乎都是连续的,所以信息量很少。只有从比较近的星系测得的21cm谱线的红移才于光学观测的情况相似。 [来自于宇宙物理学] 在宇宙膨胀的观念中,其主要的证据来自于宇宙光线的谱线红移,那么,谱线红移的客观事实结果的唯一解释是不是谱线发射体在远离我们而去呢?如果谱线发射体在远离我们而去是谱线红移的唯一的解释,那么宇宙的膨胀的解释则成立,否则,则不能成立。这样的结论关键在于谱线红移和谱线发射体在远离我们而去是唯一对应的解释。或者是主要的解释,其它可能包含的解释可以略而不计。 我们稍微对光波和宇宙空间的环境分析一下,就知道这样的解释不是唯一的,更不是主要的解释。下面我们来看引起谱线红移的可能性的解释。 1、引起谱线红移可能性的解释 第一、传递波的介质可能引起的红移(假设中的,很可能不存在) 引起谱线红移的可能性的解释我们可以先从常规波来探讨这个问题。 我们从平静的水面上投掷一颗石子,那么石子会在水面上形成水面波,只要我们稍微注意一下就会发现,随着水面波向远处传递,波峰的运动速度会越来越慢。其原因是由于水的粘滞系数的关系。 在声波上也有相似的结果,近处打雷的声音要清脆一些,而远处的雷声要低沉一些,其原因是声源所引起的声压、分子的运动速度,都会由于损耗减小所至。[可参见速度的问题之二————震动与波(上)] 如上两种机械波的在传递过程中所引起的频率红移,都是由于传递波的介质而引起,或者说是由于介质的机械属性所引起。当然,这和空间中传递的电磁波是完全不同属性的波。不能做相同的类比。 但是,光的传递介质是不是存在。在十九世纪,以太作为光的传递介质被麦克尔逊——莫雷实验否定后,其它有效的并被人们所接受的作为介质还没有被提出来。如果传递光的介质存在力学的属性,那么谱线的衰减红移,则是一种必然。可惜的是迄今没有发现这种介质。 (另:关于光的传递介质,童正荣先生曾提出过wg粒子,它是和引力相关联的粒子,在光的传递过程中,存在距离效应。童先生的文章我并没有读过,只是偶尔从论坛上看到过他所粘贴的帖子,也表达过距离红移相似的内容。) 因此,对于遥远星系光的红移可以采用三种方法的可能,即:由于宇宙中存在的物质所导致的康普顿散射、带电粒子对光线能量的吸收所导致的红移;宇宙膨胀导致的宇宙大小尺度上存在的距离红移;由于宇宙天体的运动所形成的多普勒频移。 第二、空间中的物质导致的红移 在广漠的宇宙空间中存在着大量的轻原子粒子、基本粒子,光线在穿过这些粒子的过程中,会产生散射。考虑到光线和这些粒子的作用,那么会存在降低谱线频率的现象,这种现象通常叫作康普顿效应。传统中所指的康普顿效应是指光线和原子中电子的碰撞过程,我认为光线不仅仅和原子中的电子发生的碰撞会存在频率降低的现象,光线和基本粒子的作用也会存在频率降低的现象。在空间的介质问题之四 ——光的本性与麦克尔逊—莫雷实验(中)(光的粒子性)中,已经讨论了关于光和带电粒子间的作用,另一方面,康普顿效应已经解决了光和原子间作用的规律,因此这里就不探讨光和原子间作用的详细的细节性问题了,而仅列出光和基本粒子作用的结论。即: 光和带电基本粒子间的作用过程中,光的频率降低而减小的量值同带电粒子的速度变化率成正比。这一点不适用于原子等复合性的粒子,即:不适用于传统康普顿效应的计算方法。 毫无疑问,光通过宇宙空间中的介质粒子的过程中,会和这些介质粒子发生相互作用。由于这些粒子既包括高速运动的带电粒子流,也包括在近乎静止的原子分子,因此在处理上,可以采用宏观统计的方法进行各向同性处理,对于广阔的宇宙而言,甚至可以当作一种常数。当然,这样的处理方法是近似的处理方法,并不是很严密,因为在不同的宇宙空间中,比如接近宇宙天体和远离宇宙天体,粒子、离子、原子分布的种类、数量以及状态是完全不同的。将导致康普顿效应的空间介质当作一种统计上的常量处理。(光和带电粒子间的作用所导致的红移能不能包含在其中,这是一个精确度的问题,寻求更精确的我想不能包含在其中。) 第三、宇宙天体和地球的相对运动速度所导致的红移 如图:有一静止波源在发射一个一维确定波长的波,当观测者静止时,它会观测到两个竖直线间距离的波长。假如这个观测者以一个确定速度在运动,那么当他接受到第一个波峰之后,它会继续向波源运动,当他接受到另一个波峰时,它所在的位置已经在虚竖线的位置,那么我们所实际观测到的波长则不是静止时的波长。通常我们采用频率的变化来描述这种状态,通常叫做谱线的频移。 在常规的机械波,如声波中,假设观察者和波源都在同一条直线上,并且观测这和波源存在相对运动,并且是匀速的,那么,波源所发出的一个确定频率的波会因为波源和观测者的相对运动而在观测者的观测结果里,频率会有所改变。通常我们把这种现象叫做多普勒频移。其表达式为 其中为观测者相对于媒质的速度,u为波源相对于媒质的速度,波的传播速度为V,为观测者观测到的频率,为波源发出的频率。如果应用于宇宙空间中的多普勒频移,只要将上式中的分母换作时间膨胀因子(或者空间收缩因子)为观测者或者波源的速度,那么就是相对论的表达形式。 采用波长来表达在形式上可以更为简单一些,即:λ=λ0-Δι,其中λ观测者观测到的波长,λ0为波源发出的波长,Δι为光通过一个观测者观测到的一个波长的时间里,观测者和波源之间的相对位移。 在观测到的宇宙中遥远的星光的频率所发生的改变,通常被认为是第三种情况,宇宙天体和地球的相对运动速度所导致的红移,很自然的,在现代天文学中就得到了宇宙膨胀的结论。 2、谱线频移的鉴别方法 在前面我们已经探讨了宇宙中遥远星系所发出的光在我们观测上可能会存在三种频移,这三种频移单独观察一个谱线是无论如何也不能进行区分的。那么是不是就没有办法了呢?当然不,以下方法可以将谱线的三种频移分辩开来。 第一、传递波的介质或者距离效应所导致的红移(暂时针对机械波) 波的传递介质或者距离效应所导致的频移其原因是由于传递波的介质在对光的能量传递过程中所形成的能量损耗所造成,因此在关系式上,可以表达成光衰减的频率同光传递的距离成正比。可以表示为: =-△ 其中表示我们观测到的频率,为标准谱线的频率,△为光线通过确定空间长度后所衰减的频率,它和距离长度成正比。如果我们将上图中的谱线横线当作谱线坐标的话,那么我们会看到谱线均匀的横向移动,每一条实际观测的谱线都会在标准谱线系图上横移△。 如图: 图中颜色较淡的竖线,表示我们实际观测到的发生频移的谱线系。较深的竖线表示标准的谱线系。当然,在对遥远星系的观测过程中,我们得到一个谱线系是不容易的,因为光线强度是非常小的。其实,只要在实际的观测中观测到到任意两条谱线,那么就可以采用这种比较的方法来得到结果。 (关于这个图并不是标准的,在谱线位置的关系上也是不对的,这里仅仅为了说明观测到的多普勒红移在标准的谱线系上的比较存在区别,只要注意采用观测谱线和标准谱线之间的关系很容易鉴定,那么这个图则是次要的了。) 第二、宇宙天体和地球的相对运动速度所导致的多普勒红移 多普勒频移仅和观测者和光源的相对速度有关,那么多普勒的表达形式为: 由于观测者和光源之间的相对速度在不同的谱线中是相同的,因此可以简单的表达成=k,其中k等于。 我们可以看到,多普勒频移和距离效应存在着本质的区别,这种区别就是在谱线系的标准图上和我们观测到的谱线系,其谱线的位置的变换为=k。如图: (关于这个图并不是标准的,在谱线位置的关系上也是不对的,这里仅仅为了说明观测到的多普勒红移在标准的谱线系上的比较存在区别,只要注意采用观测谱线和标准谱线之间的关系很容易鉴定,那么这个图则是次要的了。) 第三、空间中的物质导致的红移 空间中的物质所导致的红移除了星际分子原子物质和光发生的康普顿散射之外,其它的就是带电粒子和光发生的作用了。但由于前面的多普勒频移是简单的谱线移动,那么这就提供了一种简单的鉴别两种红移的方法。 如果将宇宙中的媒质采用统计的方法,可以将媒质当作异种均匀的各向同性的分子原子物质处理。但是对带电粒子处理则不能采用这样的方法,因为带电粒子的运动速度在空间中的分布应该符合一种统计的分布。光子和这些带电粒子的作用所引起的谱线频移则要采用统计分布的原则了。 频率高的光和介质发生的康普顿散射所损失掉的能量要多一些,频移相对的要大一些。相反,频率低的光和介质发生的康普顿散射所损失掉的能量要小一些,频移相对的也要小一些。那么这就存在这样一种趋势,就是光经过大量的多普勒散射之后,频率分布会趋向均匀,换句话说,将会趋向于连续谱线。带电粒子和光线的作用也是相似的。谱线系的结构在我们观测上将会模糊或者消失。当然,这依赖于光线通过的距离。如果是光线通过的距离是无限的,那么我们所观测到的则必然是某种连续谱线。这一点很容易和上两种谱线频移的原因区分开。2023-07-20 08:37:461
谱线的红移和蓝移是什么意思?
天体以很大的速度远离我们,光谱上的谱线发生红移(谱线向波长长的红色一端移动)。天体以很大的速度向我们飞来光谱上的谱线发生蓝移(谱线向波长短的蓝色一端移动)。奇怪的是,SS433既具有红移,又具有蓝移。这至今是一个未解之谜。2023-07-20 08:38:124
红移值的介绍
1.由于多普勒效应,从离开我们而去的恒星发出的光线的光谱向红光光谱方向移动。 2.一个天体的光谱向长波(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。2023-07-20 08:38:212
红移效应的红移公式
z=v/c (忽略相对论)2023-07-20 08:38:381
为什么谱线红移可以作为宇宙大爆炸的理由?
恩,一楼的是正解。应该给予最佳答案。2023-07-20 08:38:577
纳米颗粒的红移蓝移?
红移产生原因是两物体间相对距离不变,波长被迫拉长,光谱就显得偏红一些,蓝移则是指波长被迫缩短,光谱显得偏蓝.2023-07-20 08:39:132
什么是红移定律?
所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。换句话说,由于多普勒红移现象的存在,从这个意义上来讲,宇宙不是无限的,而是有界的,即天体红移的速度等于光速的地带就是宇宙的边缘和界限了,超过了这个界限,也就超过了光速,光线也就因此永远无法达到我们的视界,那就不是我们这个世界了,到底是怎样只有上帝才知道。现在,根据科学测定,宇宙的年龄大约是150亿年,这个既是它的年龄(时间),其实也是它的空间长度,即150亿光年是我们观察太空理论上能达到的最远距离了,我们现在看到的距离地球150亿光年的地方恰恰就是宇宙诞生时的镜像。150亿年前,在大爆炸的奇点,时间和空间获得的最完美的统一,那一点(或那一刻)即是我们整个宇宙的开端。2023-07-20 08:39:261
引力红移的介绍
引力红移,是强引力场中天体发射的电磁波波长变长的现象。由广义相对论可推知,当从远离引力场的地方观测时,处在引力场中的辐射源发射出来的谱线,其波长会变长一些,也就是红移。只有在引力场特别强的情况下,引力造成的红移量才能被检测出来。引力红移现象首先在引力场很强的白矮星(因为白矮星表面的引力较强)上检测出来。二十世纪六十年代,庞德、雷布卡和斯奈德采用穆斯堡尔效应的实验方法,测量由地面上高度相差22.6米的两点之间引力势的微小差别所造成的谱线频率的移动,定量地验证了引力红移。结果表明实验值与理论值完全符合。当发生相对运动的两个物体之间的距离相互远离时,在它们之间传播的电磁波的频率会变低,光谱线的这种位移称为红移。若是相互接近,频率会变高,称为紫移。2023-07-20 08:39:341
分析化学图谱中的高场和低场是什么意思,红移与篮移和向高低场移动有关系吗
高场和低场是在NMR中的概念,指原子核所处磁场强度,红移蓝移是光谱分析中概念,指吸收或发射峰向长波(红移)或短波(蓝移)方向移动.2023-07-20 08:39:491
红移和蓝移是什么啊?
所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。换句话说,由于多普勒红移现象的存在,从这个意义上来讲,宇宙不是无限的,而是有界的,即天体红移的速度等于光速的地带就是宇宙的边缘和界限了,超过了这个界限,也就超过了光速,光线也就因此永远无法达到我们的视界,那就不是我们这个世界了,到底是怎样只有上帝才知道。现在,根据科学测定,宇宙的年龄大约是150亿年,这个既是它的年龄(时间),其实也是它的空间长度,即150亿光年是我们观察太空理论上能达到的最远距离了,我们现在看到的距离地球150亿光年的地方恰恰就是宇宙诞生时的镜像。150亿年前,在大爆炸的奇点,时间和空间获得的最完美的统一,那一点(或那一刻)即是我们整个宇宙的开端。当光源向观测者接近时,接受频率增高,相当于向蓝端偏移,称为“蓝移”,也就是最大吸收波长向短波长方向。 蓝移(或紫移,hypsochromic shift or blue shift)是吸收峰向短波长移动。 例如-COOR基团,能产生紫外-可见吸收的官能团,如一个或几个不饱和基团,或不饱和杂原子基团,C=C, C=O, N=N, N=O等称为生色团(chromophore); 助色团(auxochrome):本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。 一般助色团为具有孤对电子的基团,如-OH, -NH2, -SH等。 含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光。 介绍一下红移(red shift) 一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。 光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。2023-07-20 08:39:581
什么是红移现象
多普勒现象知道吧?火车对着开并鸣笛频率越来越高;相反,则降低。红移就是如此,因为频率降低,所以宇宙在膨胀。2023-07-20 08:40:074
红移是什么
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的γ射线、X-射线和紫外线等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为“红移”。2023-07-20 08:40:331
红移的介绍
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的γ射线、X-射线和紫外线等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为“红移”。1当光源远离观测者运动时,观测者观察到的电磁波谱会发生红移,这类似于声波因为多普勒效应造成的频率变化。这样的红移现象在日常生活中有很多应用,例如多普勒雷达、雷达枪[1],在分光学上,人们使用多普勒红移测量天体的运动[2]。这种多普勒红移的现象最早是在19世纪所预测并观察到的,当时的部分科学家认为光的本质是一种波。另一种红移机制被用于解释在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象。红移增加的比例与距离成正比。这种关系为宇宙在膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。2023-07-20 08:40:411
什么是"红移"?
http://www.kepu.gov.cn/zlg/yuzhou/d52.htm2023-07-20 08:40:597
什么叫做红移
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低.红移的现象目前多用于天体的移动及规律的预测上. 红移现象 简介 1. 由于多普勒效应,从离开我们而去的恒星发出的光线的光谱向红光光谱方向移动. 红移 2. 一个天体的光谱向长波(红)端的位移.天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长.因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为 红移 . 植被曲线红移 3. 在高光谱遥感领域的 红移 .在植被的光谱曲线中,遭胁迫的植物的红-红外透射曲线向更短波长方向移动(Cibula和Carter,1992)的现象称为“ 红端偏移 ”简称 红移 . 简单的说,就是700纳米波长范围的拐点向短波方向移动(如左图曲线).红移一般是植被遭受胁迫所致,具体解释如下: 叶片的光谱反射最有可能在敏感的可见光范围(535~640纳米和685~700纳米)首先反映植被受胁迫的情况.当植被遭受胁迫和叶绿素生产量开始下降时,由于叶绿素的缺乏一般会使植物在叶绿素吸收带上的吸收减少.这样的植物具有高得多的反射,特别是在红光和绿光部分.(John R Jensen)因此,植物会变成黄色或萎黄色.可见光的反射率增加实际上与植被遭受胁迫时叶片反射率的响应完全一致.只有当足够大并造成这篇严重脱水时,红外反射率才会开始响应(即,开始红移).2023-07-20 08:41:131
什么叫红移
红移红移(Red shift):1.由于多普勒效应,从离开我们而去的恒星发出的光线的红化。2.一个天体的光谱向长波(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。3.红移目前已发现三种:多普勒红移、宇宙学红移和引力红移,通常所说的多普勒红移,只是最常见的一种红移而已2023-07-20 08:41:263
谁能具体解释下红移?拜托。
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的γ射线、X-射线和紫外线等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为“红移”。当光源远离观测者运动时,观测者观察到的电磁波谱会发生红移,这类似于声波因为多普勒效应造成的频率变化。这样的红移现象在日常生活中有很多应用,例如多普勒雷达、雷达枪,在分光学上,人们使用多普勒红移测量天体的运动。这种多普勒红移的现象最早是在19世纪所预测并观察到的,当时的部分科学家认为光的本质是一种波。另一种红移机制被用于解释在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象。红移增加的比例与距离成正比。这种关系为宇宙在膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。多普勒红移1.由于多普勒效应,从离开我们而去的恒星发出的光线的光谱向红光光谱方向移动。红移2.一个天体的光谱向长波(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。植被曲线红移3.在高光谱遥感领域的红移。在植被的光谱曲线中,遭胁迫的植物的红-红外透射曲线向更短波长方向移动(Cibula和Carter, 1992)的现象称为“红端偏移”简称“红移”简单的说,就是700纳米波长范围的拐点向短波方向移动(如右图曲线)。引力红移红移(5张)引力红移,是强引力场中天体发射的电磁波波长变长的现象。由广义相对论可推知,当从远离引力场的地方观测时,处在引力场中的辐射源发射出来的谱线,其波长会变长一些,也就是红移。只有在引力场特别强的情况下,引力造成的红移量才能被检测出来。引力红移现象首先在引力场很强的白矮星(因为白矮星表面的引力较强)上检测出来。二十世纪六十年代,庞德、雷布卡和斯奈德采用穆斯堡尔效应的实验方法,测量由地面上高度相差22.6米的两点之间引力势的微小差别所造成的谱线频率的移动,定量地验证了引力红移。结果表明实验值与理论值完全符合!如果有问题请追问,希望楼主参考!参考资料:http://baike.baidu.com/link?url=ufVA4WIe3Yr21J15Nmy4-RhWvNVht_WhQ8NkuC8lgzdhcwwsMG1Vm_t--ZTUauA4Khn0BUB2Lag17GgzO_EReK2023-07-20 08:41:441
什么叫做“红移”?
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。 红移现象 简介 1. 由于多普勒效应,从离开我们而去的恒星发出的光线的光谱向红光光谱方向移动。 红移 2. 一个天体的光谱向长波(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为 红移 。 植被曲线红移 3. 在高光谱遥感领域的 红移 。在植被的光谱曲线中,遭胁迫的植物的红-红外透射曲线向更短波长方向移动(Cibula和Carter,1992)的现象称为“ 红端偏移 ”简称 红移 。 简单的说,就是700纳米波长范围的拐点向短波方向移动(如左图曲线)。红移一般是植被遭受胁迫所致,具体解释如下: 叶片的光谱反射最有可能在敏感的可见光范围(535~640纳米和685~700纳米)首先反映植被受胁迫的情况。当植被遭受胁迫和叶绿素生产量开始下降时,由于叶绿素的缺乏一般会使植物在叶绿素吸收带上的吸收减少。这样的植物具有高得多的反射,特别是在红光和绿光部分。(John R Jensen)因此,植物会变成黄色或萎黄色。可见光的反射率增加实际上与植被遭受胁迫时叶片反射率的响应完全一致。只有当足够大并造成这篇严重脱水时,红外反射率才会开始响应(即,开始红移)。2023-07-20 08:41:521
什么叫红移
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的紫外线等波段,波长变长确实是波谱向红光移动,红移的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为红移。2023-07-20 08:42:012
什么是红移,可以作简单的解释吗?
说明物质在远离我们2023-07-20 08:42:227
什么是红移现象?
这一现象表现为所有的星系在逐步远离我们,解释为宇宙是在膨胀的.2023-07-20 08:42:423
关于红移及蓝移
分类: 教育/科学 >> 科学技术 问题描述: 相对论的前提之一是:对于以任何速度运动的观察者,光速都是恒定的,也就是说相对和相反与我们运动的光射到我们这里时与我们的相对速度都是***********m/s,那么单位时间内通过我们的波的数量也一定,不就不会发生红移和蓝移了吗? 解析: 红移和蓝移与速度是没关系的,是频率的变化体现在光谱上的谱线移动。 比方说,一颗星发出的光,光速到达地球,我们可以观测它的光谱,但当它运动,由于多普勒效应,频率就会发生变化(在速度不变的前提下),所以谱线就会移动。 所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。 而蓝移,当光源向观测者接近时,接受频率增高,相当于向蓝端偏移,称为“蓝移”。2023-07-20 08:43:031
天文学家哈勃于多少年观测到红移现象?
1929年。所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。爱德文·哈勃(英语:Edwin Powell Hubble,1889年11月20日-1953年9月28日),美国著名天文学家。哈勃证实了银河系外其他星系的存在,并发现了大多数星系都存在红移的现象,建立了哈勃定律,是宇宙膨胀的有力证据。哈勃是公认的星系天文学创始人和观测宇宙学的开拓者,并被天文学界尊称为星系天文学之父。为纪念哈勃的贡献,小行星2069、月球上的哈勃环形山以及哈勃太空望远镜均以他的名字来命名。代表作品有《星云世界》、《用观测手段探索宇宙学问题》。2023-07-20 08:43:121
什么是红移和紫移?
罗嗦!红移就是远离我们而去,蓝移就是靠近我们而来。说那么多很难理解的!2023-07-20 08:43:252
什么是红移现象?红移现象说明了什么?
光有速度2023-07-20 08:43:358