汉邦问答 / 问答 / 问答详情

《无限接近》攻略

2023-07-16 12:48:52
大鱼炖火锅

《无限接近》攻略不知如何解决,为此小编给大家收集整理《无限接近》攻略解决办法,感兴趣的快来看看吧。

《无限接近》攻略

◎接受镇定剂贺一宁+2

眼前就有个送上门来的倒霉蛋贺一宁+1

◎有意思纪修+1

欠收拾无

◎征求贺一宁的意见贺一宁+1

直接道明想法无

◎继续拿贺一宁做实验贺一宁-2

换个实验对象贺一宁+2

◎翻找左边的柜子碎片+1

翻找右边的柜子无

◎再找找线索冷静+1

智力+1

随便猜几个拳脚+1

纪修-1

第二章

◎无所谓无

那你来?江允+1

◎卡先生无

教官大人纪修+1

◎询问无

暂不询问江允+2

冷静+1

◎买吧碎片-1

江允+2

没这个必要无

◎这可是你说的

-遵命顾言+3

-这就受不了了?顾言+1

不不敢顾言+2

◎等他恢复无

给他一杯水贺一宁+2

什么是无限接近

简单一点说,就是要有多接近就有多接近
2023-07-15 18:29:112

无限接近2符号怎么表示

limx→2
2023-07-15 18:29:214

"无限接近,但永远不相交"这是个什么样的概念

很简单电影很多的 比如你和她
2023-07-15 18:30:214

语文中无限接近是并列短语吗

不是,是两个意思的词语,肯定不是
2023-07-15 18:30:353

数学中最悲伤的一句话 “无限接近,永不相交 , 相交之后,渐行渐远。” 啥意思

这句话可以做谜语了,谜底就是:平行线。平行的两条线,可以无限接近,但永不相交;相交之后,分叉(分歧)渐长渐大。为人处事注意一定的界限,不要过度干涉,这就是尊重。舒服的关系在于清晰的界限感,这就是平行。
2023-07-15 18:30:532

有无限接近于无限吗

有的,这种情况有很多。
2023-07-15 18:31:364

无限接近是什么短语类型

无限接近是偏正短语。“无限”作为副词,用来修饰中心词”接近“。
2023-07-15 18:31:551

高等数学极限中的无限接近是一点点增加接近吗

7.8,7.9,7.89,7.999。这四个点如果在邻域内都无限逼近8,那就说明极限是吧,这些点所在的函数在邻域内并不一定单调
2023-07-15 18:32:063

数学中无限接近但永不相交什么意思?

数学中“无限接近,永不相交 , 相交之后,渐行渐远。”是指两条直线。“无限接近,永不相交”意指两条平行线。无限延长,但一直保持距离,不能相交。“相交之后,渐行渐远”意指两条相交的直线。相交后无限延长,但相距越来越远。扩展资料平行线:几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。相交线:相交直线(intersecting straight lines)两直线间的一种位置关系。指有惟一公共点的两条直线.该公共点称为两直线的交点。平面内两条相交直线的标准方程:ax^2-by^2=0(ab>0) 交点在原点,属于二次曲线之一。交点在任意位置的两条相交直线方程左边为两条相交直线一般方程的等号左边乘积,右边为0。多条相交直线则是多条相交直线一般方程左边乘积等于零。参考资料:百度百科-平行线百度百科-相交线
2023-07-15 18:32:571

两个物体无限接近时,引力会无穷大吗?

老师说当两个物体无限接近就没有引力了 ,不知道为什么
2023-07-15 18:33:317

如果两个物体无限接近时,引力真的会无穷大吗?

当然不可能,因为当两个物体无限接近时,它们的质心也只是缩短了几万分之一,而且分母缩小的不可能比分子的缩小速度快。
2023-07-15 18:34:203

数学中,无限接近于1,就等于1,对吗?

接近于1,但不是1。
2023-07-15 18:35:226

数学中,无限接近于1,就等于1,对吗

--------------------最原始回答分割线开始--------------------------------------------------对,而且说的很精确。一个数与1的差的绝对值任意小,这个数就是1.比如0.999999....就等于1,它和1的距离可以任意小,是1的另外一种写法。--------------------最原始回答分割线结束--------------------------------------------------补充,两个数之差的绝对值delta可以任意小指的是:对任意给定的一个e>0, 成立delta<e
2023-07-15 18:35:4110

无限的接近真的就是等于吗?

无限的接近是等于
2023-07-15 18:36:134

《无限接近》海王线关键选项攻略

《无限接近》海王线关键选项攻略不知如何解决,为此小编给大家收集整理《无限接近》海王线关键选项攻略解决办法,感兴趣的快来看看吧。《无限接近》海王线关键选项(按照剧情走向排序):贺一宁送镇定剂,选择:送上来的倒霉蛋进顾言房间,选择:亲一口三日养成:休息室,医院,纪修家和顾言去演唱会:继续挑衅陆明恒:借机欺负他未知角色(米秋):亲自去看他 答应陆明恒祭拜朋友:和他一起去飞机上和纪修:吃醋了在家里和江允:解释五日养成:休息室 指挥部花两碎片 晚上殷梓月 在家找江允温默涵:想到了米秋:我急陆明恒动手术:安抚他心疼他易淮开家长会:姐夫陆明恒:心平气和顾言喝醉:亲自送他不管了林恺来行动局:你喜欢我?纪修:拦住他米秋新房子:金屋藏娇唐子煜吃味:不奇怪五日养成:休息室林恺 ,办公室陆明恒,家里米秋选我的人,自家江允选我认真的,情报局温默涵,夜店贺予然,医院贺予然,片场唐子煜选特别喜欢,易家易淮,指挥部顾言,海岛纪修选真的想你找顾言:冲鸭!两个碎片!基地:陆帮取依靠救贺一宁:深度标记陆明恒:叫停纪修炸了:强吻!贺被妹子围攻:解围温干的好事:标记他!易淮:亲昵送礼的唐唐:经常戴吃醋的自己:误会什么了易感期触发:推倒管家易淮看不清自己的感情:不爽给嘴犟的温惩罚:搜身陆陆:我对你还不好吗唐唐:我相信你十日养成:自家找米秋,抱抱他 易氏林恺,当然关心 片场,迟点回复 医院,是 休息室,已经有了 总控室,伴侣 射击室贺一宁 训练室顾言,为他着想 训练室纪修,不敢 牢房,信息素 江允,很可爱 晚上夜店,该不会是因为我吧
2023-07-15 18:36:211

数学里有无限接近的概念吗?

有,极限
2023-07-15 18:36:323

为什么总是说无限接近,无限接近不就是等于

无限接近不是等于。是变量变化趋势的描述性说明,是一个无限的过程
2023-07-15 18:36:422

无限靠近死亡什么意思?

无限接近死亡出自海德格尔的格言,原文为“向死而生的意义是:当你无限接近死亡,才能深切体会生的意义。”马丁·海德格尔是德国哲学家,20世纪存在主义哲学的创始人和主要代表之一。马丁·海德格尔出生于德国西南巴登邦(Baden)弗赖堡附近的梅斯基尔希(Messkirch)的天主教家庭,逝于德国梅斯基尔希。
2023-07-15 18:37:232

无限接近和相等是一样的吗

不是哦如Lim x->0[(1+1/x)^x=e这里x无限接近于0,但这里x做分母,所以不是0懂了吗?在举个例子Lim x->0[Sinx/x]=1同理0.99999=1,没错,但是0.99999999.不是无限接近
2023-07-15 18:37:361

谁给我深入解释一下高等数学极限的概念》为什么无限接近但是不达到就可以看作是等于???

柯西:“当一个变量逐次所取的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这个定值就叫做所有其他值的极限值,特别地,当一个变量的数值(绝对值)无限地减小使之收敛到极限0,就说这个变量成为无穷小”。 柯西把无穷小视为以0为极限的变量,这就澄清了无穷小“似零非零”的模糊认识,这就是说,在变化过程中,它的值可以是非零,但它变化的趋向是“零”,可以无限地接近于零。 柯西把这种“模棱两可”的差值说成是:非零,但它趋向于零。 维尔斯特拉斯:所谓 an=A,就是指:“如果对任何ε>0,总存在自然数N,使得当n>N时,不等式|an-A|<ε恒成立”。 数学中把“等于”解释成“极限”。即0.999999......=1是说0.999999......的极限是1。
2023-07-15 18:37:479

无限接近中文啥意思

分子有一个最小的零点能(分子热运动的最小动能),有人就认为达到绝对零度时分子还会运动,但实际上温度正是指分子热运动的平均动能,既然分子还在运动,那么就说明温度没有达到绝对零度,零点能说明绝对零度不仅不可能达到,而且不能无限接近,任何物体都至少会有一定的温度,怎么能无限接近绝对零度呢?再说冷却设备的功能也不可能无限好,也许还没有达到零点能就到了冷却设备发展的极限(不要以为什么都能无限发展,高温虽然没有理论上的极限,实际上也不可能有无限高的温度,最高温度在实际上也是有限的),更不用说达到绝对零度了。同样,高温虽然没有理论上的极限,实际上也不可能有无限高的温度,最高温度在实际上也是有限的,企图获得比实际上所能达到的最高温度更高的温度,也是不可能的。所以,绝对零度实际上不能无限接近,高温是有极限的。怎么能说绝对零度能无限接近,高温真没有极限呢?
2023-07-15 18:38:101

什么是无限接近于零

哈哈。。。。就是比O大的,最小的数啊 ,嘿嘿
2023-07-15 18:38:215

"无限接近,但永远不相交"这是个什么样的概念

就是现在这一段比较近,几乎在一起. 但是总能找到比这更近的,又能找到比这更更更近的…… 但是不管怎么样,他们还是没有交点.
2023-07-15 18:38:391

物理和数学中都有提到,无限接近但不能达到到底是什么概念?

这叫极限。数学里,极限有严格的定义。例如一个数列:a(1)=1/2a(2)=1/4a(3)=1/8……这个数列没有任何一项等于0(你说的不能达到),但其极限是0(无限接近0)。要证明这个数列的极限是0,证明的表达看起来是这个样子的:对于任意b>0,令k = 取整(log 1/b),当i>k,可得a(i)= 1/2^i所以a(k)的极限是0。意思就是,任意给出一个很小的数(b),都总能在这个数列中找到一项a(k),可以证明a(k)之后的所有项都比b小,于是就符合了极限(无限接近)的定义。满意请采纳
2023-07-15 18:38:491

一个关于无限趋近的问题

不一定
2023-07-15 18:38:562

无限接近是等于吗?

不是哦如Lim x->0[(1+1/x)^x=e这里x无限接近于0,但这里x做分母,所以不是0懂了吗?在举个例子Lim x->0[Sinx/x]=1同理0.99999=1,没错,但是0.99999999。。。不是无限接近
2023-07-15 18:39:061

为什么无限接近但是不达到就可以看作是等于

当变量无限接近于某值A时,函数值也会无限接近于一个定值f(A),这个定值f(A)称为函数的极限值,为了具体求出函数的这个极限值, 就须将变量无限接近的那个值A实际代入函数f(x),从而求出函数的具体极限值.这里的极限值f(A)实际上就是表示函数无限接近的值,严格说来不是真正意义上的等于!只是无限趋近(这就是极限的定义,1加上一个趋近于2的值的极限等于3,这和1+2等于3是不同的概念).比如 y=1/x, 当x趋近于0时,y=∞, 在这里因为x只是无限接近于0而并不能等于0,所以y也不是真正的等于无穷大而只是无限接近. 理解了这个概念,就能理解“看做等于”了。正确请采纳!请给我一份答题的动力。谁给我深入解释一下高等数学极限的概念》为什么无限接近但是不达到就可以看作是等于?搞不懂!数学因该是非常严谨的!可为什么这里却变得这么模棱两可?_百度作业帮
2023-07-15 18:39:141

只有无限接近死亡,才能体会生命的真谛谁的台词?

无限接近死亡,更能醒悟生命的真谛。出自马丁u2022海德格尔的《存在与时间》。原句是:当你无限接近死亡,才能深切体会生命的意义。海德格尔开创了对“存在”本身的研究,强调存在本身对于人的特殊意义。他给人定义了两种状态,一种是“本真状态”就是真实的自我,一种是“沉沦状态”就是迷失的自我。沉沦状态指的是一个人失去自我独立思考能力,把自我本身归入到群体中,用群体思维来思考问题的状态。日常的闲聊、漫不经心的好奇以及模棱两可都是一种“沉沦”的状态。所以人应该时时刻刻自省,以免堕入沉沦状态中。马丁 · 海德格尔(Martin Heidegger,1889-1976),德国哲学家,20世纪存在主义哲学的创始人和主要代表之一。出生于德国西南巴登邦(Baden)弗赖堡附近的梅斯基尔希(Messkirch)的家庭,逝于德国梅斯基尔希。
2023-07-15 18:39:321

如何证明“0.9999999999无限接近1?”

首先,数学家们本身是从0.3333333333333......×3=1/3×3开始讨论这个问题的,并给出了基本证明方式:0.999999999......=x9.999999999......=10x下式减上式9=9xx=1我们来看一下反对人的观点:1.上面证明中当0.99999999999......×10之后末尾会少一位,那么我们来思考一下,无限-1是多少,是不是还是无限,实际上这种小数学名为无限循环小数,只不过循环节是1位被称为无限小数,事实上无限小数分为无限循环小数和无限不循环小数,无限循环就是永无止境,没有尽头,和无限-1是一个道理。2.某些人认为,如果0.999999999999......=1,那么0.999999999999.....8也=1,然后缩小下去0=1首先我们来说明一下0.99999999999......8不能算是一个有理数,因为它不能化为分数,而0.999999999......可以,是9/9,即1。3.某些人认为,0.999999999......只能说是无限接近1,那么与1相差多少?0.000000000......1?小数点后无穷个0,最后一位是1?说最后,哪里是最后?是无限的,哥!__________________
2023-07-15 18:39:441

两个物体无限接近时,引力根据万有引力定律,会怎么样?

万有引力定律描述的是两个点质量之间的相互作用,在经典力学当中不存在绝对的点质量,所以两个物体无限靠近时,引力并不会无穷大,但是在相对论力学当中存在例外。牛顿在300年前创立经典力学,经典力学的基础包括牛顿三大运动定律和万有引力定律,经典力学可谓统一了天上地下的一切。我们从万有引力定律出发,有人可能会发现,万有引力定律的分母是距离的二次方,那么当距离足够小时,万有引力似乎变得无穷大。于是某些人高呼,我终于抓住了牛顿大神的把柄,要把他叫起来对峙。然而牛顿比你聪明上百倍,这点小伎俩牛顿都不屑理你;如果对上面的问题想不通,只能说你连万有引力定律都没看懂。万有引力定律:任意两个质点通过连心线方向上的引力相互吸引,该引力大小与它们的质量乘积成正比,与距离的平方成反比;数学公式为F=GMm/r^2,其中G=6.672×10-11N·m^2/kg^2。这句话当中的关键词是“质点”,质点是一个理想化模型,质点有质量但是半径为零,我们来考虑几个实际问题。一、两个铁球靠在一起实际当中的铁球存在半径,质心不可能无限靠近,比如两个10千克的实心铁球,直径大约是0.134米,哪怕两个铁球完全接触在一起,你计算出来的万有引力也是非常非常小的,因为万有引力常数G实在太小了。二、铁球半径不断缩小有人可能会继续想了,如果两个铁球也缩小了,这样它们的质心就无限靠近,万有引力是不是无穷大了呢?当然不是!你要知道对于铁球来说,体积与半径的三次方成正比,所以质量也是与半径的三次方成正比的。你的两个铁球半径缩小为原来的一半,那么万有引力公式分母将缩小为四分之一,但是分子上的质量乘积将会缩小为64分之一,所以分母不可能缩小得比分子快,这个模型下万有引力不可能出现无穷大。三、原子间的万有引力根据铁球模型,我们就能知道原子间的万有引力不会无穷大,但还是要提一点的是,微观世界中强力、电磁力和弱力其主导作用,比如电磁力的强度是万有引力的10^38倍,所以微观世界中的万有引力完全可以忽略掉。四、一个巨大物体的质心处我们还不死心,再来想象当其中一个物体的质心是空心的,然后两个物体的质心重叠会怎么样?最简单的例子,就是我们挖一条地道到地心处(假设行得通),然后人的质心和地球质心重叠,那么我们受到的地球引力会无穷大的吗?当然不会,在地心处的引力反而会减小为零,因为我们利用万有引力定律和微积分知识,可以很容易得到这么一个有趣的结论:就是对于一个质量分布均匀的物体,其内部的万有引力大小,等于物体所在半径处内部物质的引力,而所处半径外部的物质,其左右两个的引力刚好完全抵消了。于是,地球引力场分布其实是下面的情况,在地球表面的引力是最强的。五、黑洞奇点在经典力学的框架下,你不可能得到引力无穷大的情况;此时爱因斯坦出场了,爱因斯坦把时间和空间折腾了个遍,最后得到大名鼎鼎的广义相对论,在广义相对论中,就描述了一个半径无限小的黑洞奇点。如果根据广义相对论对黑洞的描述,那么黑洞奇点处的引力确实是无穷大的。爱因斯坦说:牛顿啊,要不要出来走两步!牛顿:算了,这是你的主场,我还是继续睡吧!实际上,对于任何物体,你要你把体积缩小到一定程度,这个物体就会变成黑洞,比如把地球的半径压缩到9毫米;或者把一个人压缩成直径10^-26米的小球,这比一个电子直径还要小十亿倍呢!
2023-07-15 18:39:531

无限接近死亡,更能醒悟生命的真谛是什么意思?

无限接近死亡,更能醒悟生命的真谛。出自马丁u2022海德格尔的《存在与时间》。原句是:当你无限接近死亡,才能深切体会生命的意义。海德格尔开创了对“存在”本身的研究,强调存在本身对于人的特殊意义。他给人定义了两种状态,一种是“本真状态”就是真实的自我,一种是“沉沦状态”就是迷失的自我。沉沦状态指的是一个人失去自我独立思考能力,把自我本身归入到群体中,用群体思维来思考问题的状态。日常的闲聊、漫不经心的好奇以及模棱两可都是一种“沉沦”的状态。所以人应该时时刻刻自省,以免堕入沉沦状态中。马丁 · 海德格尔(Martin Heidegger,1889-1976),德国哲学家,20世纪存在主义哲学的创始人和主要代表之一。出生于德国西南巴登邦(Baden)弗赖堡附近的梅斯基尔希(Messkirch)的家庭,逝于德国梅斯基尔希。
2023-07-15 18:40:501

数学里无限接近就是相等吗

不是的。数学上没有这种说法。例如:f(n)=1/n,n∈N*n∈N*,1/n>0n→+∞时,f(n)无限接近于0,但不等于0,而是恒大于0
2023-07-15 18:41:051

怎样使用excel表格选择几个数值无限接近于某个固定值

方法一,排序,找到那个区间段,方法二,另插入一列,=if(ABS(C2-B2)<0.00000001,"请关注","")
2023-07-15 18:41:141

人类是不是永远无法到达真理,只能无限接近于真理

真理是抽象的,所以是恒定的唯一的。不是物理学,有测不准定律、以及数学,有微积分。无限接近真理这样的话也许只是表现组词造句的丰度。但这句话可以这样诠释,为了体现出真理,人们一直在提升自己的实践水平,让实践结果无限接近真理的标准与要求。也就是产生逼真效果。所以诠释学是很有用的哲学。
2023-07-15 18:41:241

数学 什么是无限接近??

极限啊。
2023-07-15 18:41:343

无限接近,永不相交,相交之后,渐行渐远。

数学中“无限接近,永不相交 , 相交之后,渐行渐远。”是指两条直线。“无限接近,永不相交”意指两条平行线。无限延长,但一直保持距离,不能相交。“相交之后,渐行渐远”意指两条相交的直线。相交后无限延长,但相距越来越远。扩展资料平行线:几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。相交线:相交直线(intersecting straight lines)两直线间的一种位置关系。指有惟一公共点的两条直线.该公共点称为两直线的交点。平面内两条相交直线的标准方程:ax^2-by^2=0(ab>0) 交点在原点,属于二次曲线之一。交点在任意位置的两条相交直线方程左边为两条相交直线一般方程的等号左边乘积,右边为0。多条相交直线则是多条相交直线一般方程左边乘积等于零。参考资料:百度百科-平行线百度百科-相交线
2023-07-15 18:41:411

能够接近无限或无限推算的涵数公式或公式

当变量无限接近于某值A时,函数值也会无限接近于一个定值f(A),这个定值f(A)称为函数的极限值,为了具体求出函数的这个极限值, 就须将变量无限接近的那个值A实际代入函数f(x),从而求出函数的具体极限值。这里的极限值f(A)实际上就是表示函数无限接近的值,严格说来不是真正意义上的等于,只是无限趋近(这就是极限的定义,1加上一个趋近于2的值的极限等于3,这和1+2等于3是不同的概念)。比如 y=1/x, 当x趋近于0时,y=∞, 在这里因为x只是无限接近于0而并不能等于0,所以y也不是真正的等于无穷大而只是无限接近。 理解了这个概念,就能理解“看做等于”了。
2023-07-15 18:42:131

绝度零度为什么只能无限接近而无法到达呢?

138亿年前,宇宙大爆炸发生了,我们的宇宙随之诞生,随着宇宙的诞生,诞生了恒星,行星,星系,星团等。随之诞生的还有空间,时间以及温度。相信朋友们对于温度并不陌生,我们每天,每时每刻都在跟温度打交道,可以宇宙中处处充满温度,那么温度到底是什么?可能谁也说不清楚,人类所认知的温度只是人类自己定义的,好比时间一样,宇宙的时间本质是什么,没有人知道,人类的时间是我们自己定义的。爱因斯坦曾经说过,时间有可能根本不存在。可是对于温度,它确实存在于宇宙当中。在人类的认知里,温度是没有上限的,它可以无限升高,几百度,几千度,几万度等,可是温度却有一个下限值:绝对零度。相信很多朋友都知道绝对零度,它是温度不断降低的极限值,约为273.15摄氏度。绝对零度并非指的是温度上的零摄氏度,而是热力学中一个温度最低下限值,即0开尔文,换算成我们熟知的摄氏度就是零下273.15摄氏度。在我们现有的物理体系中,绝对零度只能无限接近而无法到达,那这是为什么呢?想要弄明白温度为什么只能够无限接近绝对零度,从宏观的角度我们是很难揭开其中的奥秘,只有进入微观领域,在微观世界中寻找答案。那么温度升高和降低的本质是什么?物质都是由分子或者原子组成,科学家通过研究发现,温度的变化跟分子或原子的的运动有关。当粒子运动越来越剧烈的时候,温度也在不断升高,相反的道理,当粒子运动不断减弱的时候,物体的温度也在不断降低。粒子的运动剧烈程度可能没有上限,可是粒子运动的变弱程度却有一个极限值,那就是停上,当粒子停上运动的时候,物体的温度也达到了下限值,不会再继续降低。那么粒子的运动能够完全停上下来吗?当然不可能,粒子的运动即使再慢,它也会有波动,不会完全停上。粒子运动无法完全停上,那么物体的温度下限值也只能是一个无限接近绝对零度,不可能达到。当然如果从粒子动能的角度来分析也是成立的,当粒子的运动静止不动时,动能为零,热能为零,而动能,势能不可能存在负数,因此绝对零度就是温度的下限值。但是运动是相对的,粒子的运动不可能停止,因此温度也只能无限接近绝对零度,而无法到达。通过微观世界,我们找到了温度温度的奥秘,也知道了绝对零度只是一个理论上存在的温度,它其实在现实中是不可能达到的。而人类在探索这个世界,探索宇宙奥秘的时候,也在对温度进行研究探索。而宇宙的背景辐射温度达到了零下270摄氏度,已经非常接近绝对零度。虽然宇宙中有很多热源,比如恒星,可是宇宙太浩瀚了,恒星之间的距离都在数光年以上,因此宇宙的大部分区域温度都是接近绝对零度。而我们也没有在宇宙中发现哪个星球的最低温度能够达到绝对零度。科学家在实验制造的超低温度虽然比宇宙温度还要低,可是也无法达到绝对零度,由此可见,绝对零度还真是一个理论中存在的温度,它只能无限接近而无法到达。可能也有人认为,宇宙的温度本质到底是什么,可能人类还没有真正掌握,我们对于温度的理论只限于人类现在的科技层面。而绝对零度也是人类自己定义的,有可能在浩瀚的宇宙某个角落就存在着超过绝对零度的低温环境。这此朋友的认知也未必就有错,世界上没有永恒不变的绝对真理,任何事物都是相对的,人类世界的温度确实是我们自己定义的,对它的理解也是在人类的科学基础之上得到的结论。它是否完全正确仍然是一个未知数,有可能再过千年或万年以后,现在的温度概念有可能会被完全打破,新的温度认知理论会出现,那个时候温度的上限和下限或许会有新的结论。如果宇宙中存在外星文明,那么外星文明对于温度的理解是否也会和人类一样呢?有可能一样,也有可能完全不一样,有可能不同实力的文明对于温度的理解也会不同。只有人类努力发展科技,等未来我们走出太阳系,接触到其它的外星文明,或许就可以了解到其它文明对于温度的理解,或许我们会得到新的温度理论。宇宙有太多的奥秘等着我们去破解,温度的奥秘只是其中之一,其次还有空间和时间更是神秘,当我们掌握空间,有可能会实现宇宙的自由穿梭,宇宙的距离将不再是问题,我们想去哪里就可以去哪里。如果我们掌握了时间,就有可能实现时空穿梭,回到过去或者到达未来,甚至穿梭其它的平行世界等。越是对宇宙了解越深,越会感觉到人类的渺小,宇宙的神秘,有可能最终的宇宙终极秘密会完全颠覆人类的认知。
2023-07-15 18:42:321

无穷小就是无限接近于零。那么正负都可以吗

无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限减小)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)^2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sin(x)是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
2023-07-15 18:43:221

无限接近是什么意思

分子有一个最小的零点能(分子热运动的最小动能),有人就认为达到绝对零度时分子还会运动,但实际上温度正是指分子热运动的平均动能,既然分子还在运动,那么就说明温度没有达到绝对零度,零点能说明绝对零度不仅不可能达到,而且不能无限接近,任何物体都至少会有一定的温度,怎么能无限接近绝对零度呢?再说冷却设备的功能也不可能无限好,也许还没有达到零点能就到了冷却设备发展的极限(不要以为什么都能无限发展,高温虽然没有理论上的极限,实际上也不可能有无限高的温度,最高温度在实际上也是有限的),更不用说达到绝对零度了。同样,高温虽然没有理论上的极限,实际上也不可能有无限高的温度,最高温度在实际上也是有限的,企图获得比实际上所能达到的最高温度更高的温度,也是不可能的。所以,绝对零度实际上不能无限接近,高温是有极限的。怎么能说绝对零度能无限接近,高温真没有极限呢?
2023-07-15 18:43:301

无穷小是不是0呢?

无穷小量不是0。 无穷小量即以数0为极限的变量,无限接近于0。无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。无穷小量的性质1、无穷小量不是一个数,它是一个变量。零可以作为无穷小量的唯一一个常量。无穷小量与自变量的趋势相关。有限个无穷小量之和仍是无穷小量。2、有限个无穷小量之积仍是无穷小量。有界函数与无穷小量之积为无穷小量。特别地,常数和无穷小量的乘积也为无穷小量。恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
2023-07-15 18:43:381

无限接近并不是一个确定的值,为什么用极限求的导数即切线的斜率是确定的值

切线在某点的斜率的确是确定的值,也即我们常说的函数在某点所求的导数。但极限不是确定值,根据极限的定义,在x无限趋于无穷或者0的时候,才能得出一个值,但由于该值无法确定,我们默认他为此值(实际不是,但计算中都默认是)。比如在x趋于1的时候,x-1是趋于0的(趋于0,但不等于0,因为x趋于1,却不等于1,可能是0.999999…)使得结果无限小,小到我们默认为是0。计算的时候,因为无法用0.0000000…0001带入计算,所以一般直接取0。同理,取无穷时,也直接把一个无穷大或者无穷小(一般无穷小默认为0)的数带入计算,得出的结果也有可能是无穷大或者无穷小。
2023-07-15 18:43:531

什么是无限接近

简单一点说,就是要有多接近就有多接近
2023-07-15 18:44:021

一个常函数的极限就是这个常数,证明也符合定义,但是这个极限值不是取到了吗?极限不应该是无限接近数...

因为常函数是个常数,它和自变量x无关。极限的本意是当自变量x趋向某个值时,函数的趋向值。既然该常函数不随x变化而变化,所以,这个常函数的极限就是这个常数。
2023-07-15 18:44:102

无限接近于零却又不等于零在感情里面是什么意思

感情太丰富了
2023-07-15 18:44:246

无限接近可以说等于吗?为什么

很难说,要看你的是什么题目了
2023-07-15 18:44:523

当一个物体的运动速度无限接近于光速,它的质量变化会怎么样?

一个物体达到光速,那么他的质量将会无穷大!根据爱因斯坦狭义相对论原理,一个物体的质量与速度有关,物体速度越大,运动质量也越大,当速度达到光速时,质量为无穷大! 因为根据爱因斯坦的公式:M=m/根号下1-v^2/c^2,其中M为物体的动质量,m为静止质量.物体若速度v接近光速,则那个公式的分母便趋于零,则动质量趋于无穷大,那么物体就要用无穷大的能量去转化为质量达到光速。 所以,达到光速,物体质量无穷大。
2023-07-15 18:45:011

两个集合无限接近什么意思

意思是两个元素在某种意义上逐渐趋近或无限靠近。当说两个集合无限接近时,通常指的是两个集合中的元素在某种意义上逐渐趋近或无限靠近,在数学中,当两个集合中的元素随着某个变量趋于无穷时,如果它们的极限值相等或者差距趋于零,可以说这两个集合无限接近,这与极限概念和数列收敛相关。
2023-07-15 18:45:161

无限接近但永远不能抵达,这句话出自哪里

你像π,只能无限接近,却不能抵达——刀刀
2023-07-15 18:45:252

无穷大和无穷小的关系是怎么样的?

无穷大和无穷小的关系是倒数关系,即当x→a时,f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。无穷小量:在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
2023-07-15 18:45:321