- Ntou123
-
排列组合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。
排列组合c计算方法:C是从几个中选取出来,不排列,只组合。
C(n,m)=n*(n-1)*...*(n-m+1)/m!
例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。
排列有两种定义
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。
定义的前提条件是m≦n,m与n均为自然数。
1、从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
3、用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。
解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。
A(6,6)=6x5x4x3x2x1=720。
A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。
组合数的计算公式是什么?
组合数C(n,m)的计算公式为:例题:扩展资料:C(n,m),表示的是从 n 个不同元素中每次取出 m 个不同元素 ,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。参考资料:百度百科_组合数2023-05-14 04:39:401
组合数公式是什么?
排列组合中,组合的计算公式为:扩展资料:1、排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。2、排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。3、组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 4、一个正整数的阶乘,是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。参考资料:排列组合_百度百科阶乘_百度百科2023-05-14 04:40:041
组合数公式
组合数公式:c(n,m)=c(n-1,m-1)+c(n-1,m)。等式左边表示从n个元素中选取m个元素,而等式右边表示这一个过程的另一种实现方法:任意选择n中的某个备选元素为特殊元素,从n中选m个元素可以由此特殊元素的被包含与否分成两类情况,即m个被选择元素包含了特殊元素和m个被选择元素不包含该特殊元素。前者相当于从n-1个元素中选出m-1个元素的组合,即c(n-1,m-1);后者相当于从n-1个元素中选出m个元素的组合,即c(n-1,m)。组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。互补性质:即从n个不同元素中取出m个元素的组合数=从n个不同元素中取出 (n-m) 个元素的组合数;这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。规定:C(n,0)=1C(n,n)=1C(0,0)=12023-05-14 04:40:281
组合数公式是什么
用C(k,l)表示由k个元素中取出l个元素的组合数,则所求概率为:C(m+n-1,m)×p^n×(1-p)^m。是从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数。扩展资料:从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。排列组合计算方法如下:排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!。2023-05-14 04:40:401
组合数的计算公式是什么样的?
排列的公式:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标)。例如:A(4,2)=4!/2!=4*3=12。组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!*(n-m)!。例如:C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。两个常用的排列基本计数原理及应用:1、加法原理和分类计数法:每一类中的每一种方法都可以独立地完成此任务,两类不同办法中的具体方法,互不相同(即分类不重),完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务,各步计数相互独立,只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。2023-05-14 04:40:511
组合数公式是什么?
C(n,m) ----------n是下标 , m是上标 (C上面m,下面n),C(n,m) 表示 n选m的组合数,等于从n开始连续递减的m个自然数的积除以从1开始连续递增的m个自然数的积。例子:C(8,3)=8*7*6/(1*2*3) =56分子是从8开始连续递减的3个自然数的积分母是从1开始连续递增的3个自然数的积扩展资料1、组合定义组合(combination),数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。2、组合总数组合总数(total number of combinations)是一个正整数,指从n个不同元素里每次取出0个,1个,2个,…,n个不同元素的所有组合数的总和。3、重复组合重复组合(combination with repetiton)是一种特殊的组合。从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。参考资料:百度百科-组合2023-05-14 04:41:031
组合的计算公式是什么?
组合数公式C=C(n,m)=A(n,m)/m。组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择。其他排列与组合公式介绍:从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r),n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为n!/(n1!*n2!*……*nk!)。而k类元素来说,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m),排列(Pnm(n为下标,m为上标))。Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n。组合(Cnm(n为下标,m为上标)),Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。2023-05-14 04:41:151
组合计算公式是什么?
组合计算公式:C(n,m)=n!/m!(n-m)!。组合是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。我们把有关求组合的个数的问题叫作组合问题。与之对应的概念是排列。一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。2023-05-14 04:41:312
组合计算公式
解答: 这个问题看似简单实际上很难得到正确结果,就是用通用的编程方法也难求出结果(因为可能性实在是太多了)。我通过仔细分析,找到了154个满足要求的6个数组合,虽然还不能严格证明这是最少的,但我估计最少数和154相差不会很多,说不定就是154。希望看到本题目的高手能打破我的记录。154个满足要求的6个数组合如下所示:1)0102030405062)0607080910113)0107080910114)0207080910115)0307080910116)0407080910117)0507080910118)0102030405079)01020304050810)01020304050911)01020304051012)01020304051113)01020307080914)01020309101115)01020307081016)01020307081117)01020407080918)01020409101119)01020407081020)01020407081121)01020507080922)01020509101123)01020507081024)01020507081125)01030407080926)01030409101127)01030407081028)01030407081129)01030507080930)01030509101131)01030507081032)01030507081133)01040507080934)01040509101135)01040507081036)01040507081137)02030407080938)02030409101139)02030407081040)02030407081141)02030507080942)02030509101143)02030507081044)02030507081145)02040507080946)02040509101147)02040507081048)02040507081149)03040507080950)03040509101151)03040507081052)03040507081153)01020307091054)01020307091155)01020307101156)01020308091057)01020308091158)01020308101159)03040507091060)03040507091161)03040507101162)03040508091063)03040508091164)03040508101165)01020407091066)01020407091167)01020407101168)01020408091069)01020408091170)01020408101171)01020507091072)01020507091173)01020507101174)01020508091075)01020508091176)01020508101177)01060708091078)01060809101179)01060708091180)01060708101181)02060708091082)02060809101183)02060708091184)02060708101185)03060708091086)03060809101187)03060708091188)03060708101189)04060708091090)04060809101191)04060708091192)04060708101193)05060708091094)05060809101195)05060708091196)05060708101197)01020306070898)01020306070999)010203060710100)010203060711101)010203060809102)010203060810103)010203060811104)010203060910105)010203060911106)010203061011107)030405060708108)030405060709109)030405060710110)030405060711111)030405060809112)030405060810113)030405060811114)030405060910115)030405060911116)030405061011117)010204060708118)010204060709119)010204060710120)010204060711121)010204060809122)010204060810123)010204060811124)010204060910125)010204060911126)010204061011127)010205060708128)010205060709129)010205060710130)010205060711131)010205060809132)010205060810133)010205060811134)010205060910135)010205060911136)010205061011137)010304060708138)010304060910139)010304060711140)010305060708141)010305060910142)010305060711143)010405060708144)010405060910145)010405060711146)020304060708147)020304060910148)020304060711149)020305060708150)020305060910151)020305060711152)020405060708153)020405060910154)0204050607112023-05-14 04:41:463
组合数怎么算出来?
A(3,2)=3×2。组合数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为或者n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集合。排列组合计算方法如下:排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=62023-05-14 04:42:001
组合数公式是什么?
Cmn是组合数公式,Cmn=m!/[n!*(m-n)!] ,其中,n!代表n的阶乘。组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数,用符号Cmn表示。算法举例1、设15000件产品中有1000件次品,从中拿出150件,求得到次品数的期望和方差。2、设某射手对同一目标射击,直到射中R次为止,记X为使用的射击次数,已知命中率为P,求E(X)、D(X)。这两题都要用到一些技巧。先列出几个重要公式,证明过程中提供变换技巧,然后把这两个题目作为例题。先定义一个符号,用S(K=1,N)F(K)表示函数F(K)从K=1到K=N求和。C(M-1,N-1)+C(M-1,N)=C(M,N)。证明:1、可直接利用组合数的公式证明。2、(更重要的思路)。从M个元素中任意指定一个元素。则选出N个的方法中,包含这一个元素的有C(M-1,N-1)种组合,不包含这一个元素的有C(M-1,N)种组合。因此,C(M-1,N-1)+C(M-1,N)=C(M,N)。2023-05-14 04:42:291
组合数公式是什么啊?
C(5,3)=C(5,2)=5*4/2*1=20/2=101、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。2、在线性写法中被写作C(n,m)。组合数的计算公式为3、组合是数学的重要概念之一。从 n 个不同元素中每次取出 m 个不同元素,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。所有这样的组合的种数称为组合数。扩展资料组合数性质1、互补性质即从m个不同元素中取出n个元素的组合数=从m个不同元素中取出 (m-n) 个元素的组合数;这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。规定:C(n,0)=1 C(n,n)=1 C(0,0)=1参考资料百度百科-组合数2023-05-14 04:42:411
组合数公式怎样计算?
计算方法——(1)排列数公式排列用符号A(n,m)表示,m≦n。计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)…1例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。(2)组合数公式组合用符号C(n,m)表示,m≦n。公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。扩展资料:排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m≦n,m与n均为自然数。(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。参考资料来源:百度百科-组合数公式2023-05-14 04:43:041
组合数的计算公式。
计算结果为:10。计算过程:已知组合数计算公式如下图所示:则具体计算如下图所示:扩展资料:1、组合是数学的重要概念之一。从 n 个不同元素中每次取出 m 个不同元素 ,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。所有这样的组合的种数称为组合数。2、一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。参考资料:百度百科_组合数2023-05-14 04:43:181
求排列组合公式计算公式大全。
排列组合公式计算公式大全如下所示。1、排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。p(n,m)=n(n-1)(n-2)…(n-m+1)= n!/(n-m)!(规定0!=1)。2、组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号c(n,m)表示,c(n,m)=p(n,m)/m!=n!/((n-m)!*m!),c(n,m)=c(n,n-m)。3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!)。k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)-(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1。Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。2023-05-14 04:43:401
排列组合公式怎样计算?
排列组合计算公示:C(n,m)=C(n,n-m)。(n≥m)排列组合基本介绍: 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列的定义: 从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。排列组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。2023-05-14 04:43:552
排列组合的基本公式。
列组合公式/排列组合计算公式排列 p------和顺序有关组合 c -------不牵涉到顺序的问题排列分顺序,组合不分例如 把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(pnm(n为下标,m为上标))pnm=n×(n-1)....(n-m+1);pnm=n!/(n-m)!(注:!是阶乘符号);pnn(两个n分别为上标和下标) =n!;0!=1;pn1(n为下标1为上标)=n组合(cnm(n为下标,m为上标))cnm=pnm/pmm ;cnm=n!/m!(n-m)!;cnn(两个n分别为上标和下标) =1 ;cn1(n为下标1为上标)=n;cnm=cnn-m2008-07-08 13:30公式p是指排列,从n个元素取r个进行排列。公式c是指组合,从n个元素取r个,不进行排列。n-元素的总个数 r参与选择的元素个数 !-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从n倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r举例:q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?a1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列p”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=p(3,9)=9*8*7,(从9倒数3个的乘积)q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?a2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合c”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数c(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有 种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有 种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排 、 、 中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了 封信;②是组合问题,共需握手 (次). (2)①是排列问题,共有 (种)不同的选法;②是组合问题,共有 种不同的选法. (3)①是排列问题,共有 种不同的商;②是组合问题,共有 种不同的积. (4)①是排列问题,共有 种不同的选法;②是组合问题,共有 种不同的选法. 例4 证明 . 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质 ,可使变形过程得以简化. 例5 化简 . 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1) ;(2) . 解 (1)原方程 解得 . (2)原方程可变为 ∵ , , ∴ 原方程可化为 . 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构 三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )a.60个 b.48个 c.36个 d.24个解 因为要求是偶数,个位数只能是2或4的排法有p12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有p13;在首末两位数排定后,中间3个位数的排法有p33,得p13p33p12=36(个)由此可知此题应选c.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3p13=9(种).例四 例五可能有问题,等思考 三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )a.140种 b.84种 c.70种 d.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有c14·c25种;甲型2台乙型1台的取法有c24·c15种根据加法原理可得总的取法有c24·c25+c24·c15=40+30=70(种 )可知此题应选c.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 c38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有c15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有c24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有c22种.根据乘法原理可得承包方式的种数有c3 8×c15×c24×c22= ×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x- )10的展开式中,x6的系数是( )a.-27c610 b.27c410 c.-9c610 d.9c410解 设(x- )10的展开式中第γ+1项含x6,因tγ+1=cγ10x10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是c410(- )4=9c410故此题应选d.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于 解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是c36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+ )4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )a.1 b.-1 c.0 d.2解:a.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )a.6种 b.12种 c.18种 d.24种解 分医生的方法有p22=2种,分护士方法有c24=6种,所以共有6×2=12种不同的分配方法。应选b.例10 从4台甲型和5台乙型电视机中任意取出3台,其 中至少要有甲型与乙型电视机各1台,则不同取法共有( ).a.140种 b.84种 c.70种 d.35种解:取出的3台电视机中,甲型电视机分为恰有一台和恰有二台两种情形.∵c24·+c25·c14=5×6+10×4=70.∴应选c.例11 某小组共有10名学生,其中女生3名,现选举2 名代表,至少有1名女生当选的不同选法有( )a.27种 b.48种 c.21种 d.24种解:分恰有1名女生和恰有2名女生代表两类:∵c13·c1 7+c23=3×7+3=24,∴应选d.例12 由数学0,1,2,3,4,5组成没有重复数字的 六位数,其中个位数字小于十位数字的共有( ).a.210个 b.300个c.464个 d.600个解:先考虑可组成无限制条件的六位数有多少个?应有p15·p 55=600个.由对称性,个位数小于十位数的六位数和个位数大于十位数的六位数各占一半.∴有 ×600=300个符合题设的六位数.应选b.例13 以一个正方体的顶点为顶点的 四面体共有( ).a.70个 b.64个c.58个 d.52个解:如图,正方体有8个顶点,任取4个的组合数为c48=70个.其中共面四点分3类:构成侧面的有6组;构成垂直底面的对角面的有2组;形如(adb1c1 )的有4组.∴能形成四面体的有70-6-2-4=58(组)应选c.例14 如果把两条异面直线看成“一对”,那么六棱 锥的棱所在的12条直线中,异面直线共有( ).a.12对 b.24对c.36对 d.48对解:设正六棱锥为o—abcdef.任取一侧棱oa(c16)则oa与bc、cd、de、ef均形成异面直线对.∴共有c16×4=24对异面直线.应选b.例15 正六边形的中心和顶点共7个点,以其中三个点 为顶点的三角形共 个(以数字作答).解:7点中任取3个则有c37=35组.其中三点共线的有3组(正六边形有3条直径).∴三角形个数为35-3=32个.例16 设含有10个元素的集合的全部子集数为s,其中由3个元素组成的子集数为t,则 的值为 。解 10个元素的集合的全部子集数有:s=c010+c110+c210+c310+c410+c510+c610+c710+c810+c910+c1010=2 10=1024其中,含3个元素的子集数有t=c310=120故 =例17 例17 在50件产品 n 中有4件是次品,从中任意抽了5件 ,至少有3件是次品的抽法共 种(用数字作答).解:“至少3件次品”即“有3件次品”或“有4件次品”.∴c34·c246+c44·c146=4186(种)例18 有甲、乙、丙三项任务,甲需2人承担,乙、 丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( ).a.1260种 b.2025种c.2520种 d.5040种解:先从10人中选2个承担任务甲(c210)再从剩余8人中选1人承担任务乙(c1 8)又从剩余7人中选1人承担任务乙(c1 7)∴有c210·c1 8c1 7=2520(种).应选c.例19 集合{1,2,3}子集总共有( ).a.7个 b.8个 c.6个 d.5个解 三个元素的集合的子集中,不含任何元素的子集有一个,由一个元素组成的子集数c13,由二个元素组成的子集数c23。由3个元素组成的子集数c33。由加法原理可得集合子集的总个数是c13+c23+c33+1=3+3+1+1=8故此题应选b.例20 假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有两件次品的抽法有( ).a.c23c3197种 b.c23c3197 +c33c2197c.c5200-c5197 d.c5200-c 13c4197解:5件中恰有二件为次品的抽法为c23c3197,5件中恰三件为次品的抽法为c33c2197,∴至少有两件次品的抽法为c23c3197+c33c2197.应选b.例21 两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一个座位),则不同座法的总数是( ).a.c58c38 b.p12c58c38 c.p58p382023-05-14 04:44:221
组合数的性质公式
组合数的性质公式如下:C(n,m)=C(m-n,m),从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;依据组合数的性质,组合数还存在有递推公式如下:C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。 组合数是什么 组合是数学的重要概念之一。从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。 组合数在线性写法中被写作C(n,m)。组合数的互补性质规定:C(n,0)=1 C(n,n)=1 C(0,0)=1。例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。2023-05-14 04:44:301
组合数C105公式是什么?
C10 5=(10*9*8*7*6)/(5*4*3*2*1)=252分析和过程:公式:C(n,m)=n*(n-1)*...*(n-m+1)/m!所以:C10 5=(10*9*8*7*6)/(5*4*3*2*1)=252扩展资料:递推公式:c(m,n)=c(m-1,n-1)+c(m-1,n)等式左边表示从m个元素中选取n个元素,而等式右边表示这一个过程的另一种实现方法:任意选择m中的某个备选元素为特殊元素,从m中选n个元素可以由此特殊元素的被包含与否分成两类情况,即n个被选择元素包含了特殊元素和n个被选择元素不包含该特殊元素。前者相当于从m-1个元素中选出n-1个元素的组合,即c(m-1,n-1);后者相当于从m-1个元素中选出n个元素的组合,即c(m-1,n)。组合(combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。我们把有关求组合的个数的问题叫作组合问题。参考资料:百度百科-组合数公式2023-05-14 04:44:361
有关排列组合的公式有哪些?
A(3,2)=3×2。组合数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为或者n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集合。排列组合计算方法如下:排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=62023-05-14 04:45:001
组合数公式怎么证明?
组合的方法证明:设有n个小球放到两个不同的盒子中,盒子可以为空。若对小球进行讨论,每个小球有两个选择,共有2^n种放法。若用分类原理,一号盒子中没有小球的放法有cn0种,有一个小球的放法有cn1种,有两个小球的放法有cn2种,有n个小球的放法有cnn种,共有放法cn0+cn1+cn2+…+cnn种显然,两种方法得到的结果相同,所以有cn0+cn1+cn2+…+cnn=2^n。扩展资料:二项式定理常见的应用:方法1:利用二项式证明有关不等式证明有关不等式的方法1、运用时应注意巧妙地构造二项式。2、用二项式定理证明组合数不等式时,通常表现为二项式定理的正用或逆用,再结合不等式证明的方法进行论证。方法2:利用二项式定理证明整除问题或求余数1、利用二项式定理解决整除问题时,关键是要巧妙地构造二项式,其基本做法是:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可。2、用二项式定理处理整除问题时,通常把底数写成除数(或与除数密切相关的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)一、二项就可以了。3、要注意余数的范围,为余数,b∈[0,r),r是除数,利用二项式定理展开变形后,若剩余部分是负数要注意转换。参考资料:百度百科词条--组合数公式参考资料:百度百科词条--二项式定理2023-05-14 04:45:171
概率组合的计算公式是什么?
概率组合的计算公式是n! / ((n - m)! * m!),计算结果是20,具体如下:C概率组合计算方法就是下面数字的阶乘除以上面数字的阶乘再除以下面和上面的差的阶乘。扩展资料组合数的性质1、互补性质即从n个不同元素中取出m个元素的组合数=从n个不同元素中取出 (n-m) 个元素的组合数;这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。规定:C(n,0)=1 C(n,n)=1 C(0,0)=12、组合恒等式若表示在 n 个物品中选取 m 个物品,则如存在下述公式:C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。2023-05-14 04:45:231
排列组合有哪些公式?
排列数公式折叠排列公式P是排列公式,从N个元素取M个进行排列(即排序)。(P是旧用法,现在教材上多用A,即Arrangement)[1]折叠公式排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1)折叠符号1、C-组合数A-排列数(在旧教材为P)N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination 组合P-Permutation排列 (现在教材为A-Arrangement)2、排列组合常见公式kCn/k=nCn-1/k-1(a/b,a在下,b在上)Cn/rCr/m=Cn/mCn-m/r-m折叠编辑本段基本理论和公式排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分"类"和"步"是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列[2]当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!相关公式2023-05-14 04:45:371
排列组合公式怎么算?
排列组合计算公式A公式,表示从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫作从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,n)=n! A(n,m)=n!÷(m-n)! 0!=1C公式,表示从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,n)=1 C(n,m)=A(n,m)÷m!参考资料:百度百科—排列组合2023-05-14 04:46:001
组合数的公式
Cmn=m!/[n!(m-n)!]2023-05-14 04:46:082
排列组合公式有哪些?
排列组合公式计算公式大全如下所示。1、排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。p(n,m)=n(n-1)(n-2)…(n-m+1)= n!/(n-m)!(规定0!=1)。2、组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号c(n,m)表示,c(n,m)=p(n,m)/m!=n!/((n-m)!*m!),c(n,m)=c(n,n-m)。3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!)。k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)-(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1。Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。2023-05-14 04:46:161
排列组合A几几C几几的,有什么区别,都怎么计算来的?
1、区别排列数就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。组合数是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(m,n)表示。例:从26个字母中选5个排列:A(26,5)表示的是从26个字母中选5个排成一列;即ABCDE与ACBDE与ADBCE等这些是不一样的。组合:C(26,5)表示的是从26个字母中选5个没有顺序;即ABCDE与ACBDE与ADBCE等这些是一样的。2、计算(1)排列数公式排列用符号A(n,m)表示,m_n。计算公式是:A(n,m)=n(n-1)(n-2)??(n-m+1)=n!/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)?1例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。(2)组合数公式组合用符号C(n,m)表示,m_n。公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。扩展资料:排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m_n,m与n均为自然数。(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。参考资料:百度百科词条--组合数公式2023-05-14 04:46:321
排列和组合的公式分别是什么?
[定义]从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为P(n,r),P(n,r)。[定义]从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。从n个中取r个的排列的典型例子是从n个不同的球中,取出r个,放入r个不同的盒子里,每盒1个。第1个盒子有n种选择,第2个有n-1种选择,……,第r个有n-r+1种选择。故有P(n,r)=n(n-1)……(n-r+1) 有时也用[n]r记n(n-1)……(n-r+1)若球不同,盒子相同,则是从n个中取r个的组合的模型。若放入盒子后再将盒子标号区别,则又回到排列模型。每一个组合可有r!个标号方案。故有C(n,r)·r!=P(n,r),排列与组合的概念与计算公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). http://eblog.cersp.com/userlog17/37948/archives/2007/279757.shtml2023-05-14 04:46:521
如何证明组合数公式?
这是一个排列组合问题再这里表示较麻烦你可以去看看高中三年级数学教材2023-05-14 04:47:003
如何求组合数的和?
代入公式:C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!c(6,3)=6!/3!(6-3)!=6*5*4*3*2*1/3*2*1*3*2*1=20排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料:排列、组合公式口诀:加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。参考资料:百度百科-排列组合2023-05-14 04:47:181
请问有谁知道,排列与组合的关系公式是怎样的?
这是求组合问题:8×7×6×5÷(1×2×3×4)=1680÷24=70数学中C上标和下标的公式代表组合数。公式如下:排列组合计算方法如下:排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=62023-05-14 04:47:291
排列组合公式以及具体计算的方法
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数 R参与选择的元素个数 !-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*12023-05-14 04:47:431
排列数公式和组合数公式的区别是什么
组合公式是从n项中随机把n个数组合在一起的方法。二排列数公式是在组合数公式的基础上建立的,可以理解为把那n个数考虑顺序的组合方法。看懂了吗?2023-05-14 04:47:521
求排列组合所有公式及详解。 谢谢
从4个字母a,b,c,d中取出3个字母的组合只有4个:abc,abd,acd,bcd.从15个数字中取出4个的组合数c(15,4)=15*14*13*12/(1*2*3*4)=1365.学一些排列组合知识,您就会理解这些内容2023-05-14 04:47:592
排列组合的数学公式
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。那么排列组合有哪些数学公式呢?接下来我为你整理了排列组合的数学公式,一起来看看吧。 排列组合的数学公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个宝鸡博瀚教育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率 排列组合的数学解题思路 1特殊优先法 对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置, 这种解法叫做特殊优先法. 例如: 用0,1,2,3,4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个) 2科学分类法 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生. 例 如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350) 3插空法 解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决. 例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600) 4捆绑法 相邻元素的排列,可以采用"整体到局部"的排法,即将相邻的元素当成"一个"元素进行排列,然后再局部排列. 例如:6名同学坐成一排,其中甲,乙必须坐在一起的不同坐法是________种.(答案:240) 5排除法 从总体中排除不符合条件的方法数,这是一种间接解题的方法.2023-05-14 04:48:071
组合数公式
9 15 24 26 32 每组3个数的组合2023-05-14 04:48:272
组合数公式
组合数公式:c(n,m)=c(n-1,m-1)+c(n-1,m)。等式左边表示从n个元素中选取m个元素,而等式右边表示这一个过程的另一种实现方法:任意选择n中的某个备选元素为特殊元素,从n中选m个元素可以由此特殊元素的被包含与否分成两类情况,即m个被选择元素包含了特殊元素和m个被选择元素不包含该特殊元素。前者相当于从n-1个元素中选出m-1个元素的组合,即c(n-1,m-1);后者相当于从n-1个元素中选出m个元素的组合,即c(n-1,m)。组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。互补性质:即从n个不同元素中取出m个元素的组合数=从n个不同元素中取出 (n-m) 个元素的组合数;这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。规定:C(n,0)=1C(n,n)=1C(0,0)=12023-05-14 04:48:421
求组合数计算公式
9个数字的组合:3数组合=9*8*7/2/3=84种 4数组合=9*8*7*6/2/3/4=126种2023-05-14 04:48:583
组合数的计算公式是什么?
C²₄ 表示从 n 个物体中取出 4 个物体的组合数,可以使用组合数公式进行计算。组合数公式为:C(n, m) = n! / (m! * (n-m)!)其中,n 为总数,m 为选取的数目,! 表示阶乘运算。根据这个公式,可以计算 C²₄ 的值。步骤如下:将公式中的 n 和 m 分别替换为 4 和 2,得到 C(4,2)。根据阶乘的定义,4! = 4 * 3 * 2 * 1 = 24,2! = 2 * 1 = 2。将这些值带入组合数公式。计算 C(4,2) = 4! / (2! * (4-2)!) = 24 / (2 * 2) = 6因此,C²₄ 的值为 6。注意,在物理学中, C²₄ 通常表示时间-空间维度的余弦子群,与组合数无关。2023-05-14 04:49:241
组合公式是什么
排列组合中,组合的计算公式为:扩展资料:1、排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。2、排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。3、组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 4、一个正整数的阶乘,是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。参考资料:排列组合_百度百科阶乘_百度百科2023-05-14 04:49:301
组合的公式是什么呢?
组合公式:C(n,m)=n!/m!(n-m)。组合计算公式组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫作从n个不同元素中取出m个元素的一个组合。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。公式有时候也表示成:组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择。以此类推第m个位置可以有n-m+1个选择,则排列数为,而组合公式对应另一个模型,取出m个成为一组(无序),由于m个元素组成的一组可以有m!种不同的排列(全排列),组合的总数就是。2023-05-14 04:49:541
求组合数计算公式
这个要用到1-n个数相加和、平方和、立方和的三个公式:(1^3+2^3+3^3+……+n^3)=(1+2++……+n)^21^2+2^2+3^2+……+n^2=n*(n+1)*(2n+1)/61+2+……+n=n(n+1)/2用公式就很出来了。原式=2*2*(2-1)/1*2+3*3*(3-1)/1*2+……+n*n*(n-1)/1*2=2^3-2^2+3^3-3^2+……+n^3-n^2=(2^3+3^3+……+n^3)--(2^2+3^2+……+n^2)=(1^3+2^3+3^3+……+n^3-1^3)--(1^2+2^2+3^2+……+n^2-1^2)=(1^3+2^3+3^3+……+n^3)--(1^2+2^2+3^2+……+n^2-1^2)--1^3+1^2=(1+2+……+n)^2--n(n+1)(2n+1)/6=n^2(n+1)^2/4--n*(n+1)(2n+1)/6=3(n^4+2n^3+n^2)/12--2(2n^3+3n^2+n)/12=(3n^4+2n^3-3n^2-2n)/122023-05-14 04:50:082
排列数和组合数公式是什么?
排列数公式:A(上标m,下标n)=n*(n-1)*(n-2)*....*(n-m+1),也就是n!/(n-m)!,特别地A(上标n,下标n)=n(n-1)(n-2)„3•2•1,规定0!=1。组合数公式:C(上标m,下标n)=[n*(n-1)*(n-2)*....*(n-m+1)]/[m(m-1)(m-2)......3*2*1],也就是[A(上标m,下标n)]/[A(上标n,下标n)],组合数就是对应的排列数再除以【上标m】的阶乘。扩展资料排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。2023-05-14 04:50:141
组合计算公式
C(n,m)=n!/m!(n-m)!例如 1,2,3,4,5,从这五个数字中每次取三个出来,有多少种取法?① 不妨先做实验:123,124,125,134,135,145,234,235,245,345。 共10种组合方式。② 再进行理论计算:C(5,3)=5!/3!(5-3)!=10种组合。理论与实验具有统一性。组合计算结果小,排列计算结果大。在排列中123按顺序又分为6种: 123,132,213,231,321,312。排列A=10 × 6=60种。2023-05-14 04:50:233
排列公式和组合公式有哪些?
排列数公式:A(上标m,下标n)=n*(n-1)*(n-2)*....*(n-m+1),也就是n!/(n-m)!,特别地A(上标n,下标n)=n(n-1)(n-2)3•2•1,规定0!=1。组合数公式:C(上标m,下标n)=[n*(n-1)*(n-2)*....*(n-m+1)]/[m(m-1)(m-2)......3*2*1],也就是[A(上标m,下标n)]/[A(上标n,下标n)],组合数就是对应的排列数再除以【上标m】的阶乘。两个常用的排列基本计数原理及应用:1、加法原理和分类计数法:每一类中的每一种方法都可以独立地完成此任务。两类不同办法中的具体方法,互不相同(即分类不重)。完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务。各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。2023-05-14 04:50:401
组合计算公式
是用排列公式证明出来的,从n个互不相同的小球中取出k个的所有取法数就是组合数,把每种组合进行全排列,然后把所有组合的排列数加起来就是从n个中取出k个的排列数。从而排列数就等于组合数乘每种组合的全排列数,用公式就是:Ank=Cnk*k!而组合数Cnk=Ank/k!证毕!排列数Ank的计算方法是很容易得出来的,只用一个一个取小球,然后把每次的取法乘起来就行了,全排列也可以同理得出。至于你问的组合计算公式的原理指的就是从一个特定的对象集里选择一定数目的对象的所有选法的个数,在概率论里有介绍2023-05-14 04:50:581
排列组合有哪些公式?
排列:A(m,n)=n(n-1)(n-2)...(n-m+1) 【A(m,n)表示从n个元素中取m个元素按一定次序的排列】。【m---上标,n下标】,A(m,n) ---又成为选排列。A(m,n)=n!/(n-m)!【n!---n的阶乘,即 n*n*n...】。2.A(m,m)=m!【在m个元素中只考虑元素的次序的排列,即全排列】。组合:C(m,n)=A(m,n)/A(m,m)=n!/m!(n-m)!.【从n个元素中取m个元素的组合】C(m,n)=C(n-m,n)【从n个元素中取m个元素的组合=从n个元素中取( n-m)个元素的组合】3.C(m,n+1)=C(m,n)+C(m-1,n)。4. k*C(k,n)=n*C(k-1,n-1)。另外,规定:C(0,n)=1,0!=1。拓展资料:排列组合的计算公式是:排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n/(n-m)组合数,从n个中取m个,相当于不排,就是n/[(n-m)m]。2023-05-14 04:51:132
组合的公式是什么?
组合的公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(mn) 表示。公式有时候也表示成:组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择。以此类推第m个位置可以有n-m+1个选择,则排列数为,而组合公式对应另一个模型,取出m个成为一组(无序),由于m个元素组成的一组可以有m!种不同的排列(全排列),组合的总数就是。2023-05-14 04:51:371
组合数怎么写呢?
组合数C(n,m)的计算公式为:例题:扩展资料:C(n,m),表示的是从 n 个不同元素中每次取出 m 个不同元素 ,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。参考资料:百度百科_组合数2023-05-14 04:51:501
排列与组合的公式
排列:A(m,n)=n(n-1)(n-2)...(n-m+1) 【A(m,n)表示从n个元素中取m个元素按一定次序的排列】。【m---上标,n下标】,A(m,n) ---又成为选排列。A(m,n)=n!/(n-m)!【n!---n的阶乘,即 n*n*n...】。2.A(m,m)=m!【在m个元素中只考虑元素的次序的排列,即全排列】。组合:C(m,n)=A(m,n)/A(m,m)=n!/m!(n-m)!.【从n个元素中取m个元素的组合】C(m,n)=C(n-m,n)【从n个元素中取m个元素的组合=从n个元素中取( n-m)个元素的组合】3.C(m,n+1)=C(m,n)+C(m-1,n)。4. k*C(k,n)=n*C(k-1,n-1)。另外,规定:C(0,n)=1,0!=1。拓展资料:排列组合的计算公式是:排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n/(n-m)组合数,从n个中取m个,相当于不排,就是n/[(n-m)m]。2023-05-14 04:52:162