(初一上册) 一、x09初一质量监测: 1、勇士排球队四场比赛的成绩(五局三胜制)是1:3,3:2, 0:3, 3:1,总的净胜局数是多少?P6页 1+3+3-(3+2+3+1) =7-9 =-2 答:总的净胜局数是-2 2、下列各数是10名学生的数学考试成绩,先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.P6页 82, 83, 78, 66, 95, 75, 56, 93, 82, 81 我估算他们的平均成绩为80分. (82+83+78+66+95+75+56+93+82+81)÷10 =791÷10 =79.1(分) 答:他们的平均成绩为79.1分. 3、当温度每上升1°C时,某种金属丝伸长0.002mm.反之,当温度每下降 1°C时,金属丝缩短0.002mm.把15°C的金属丝加热到60°C,再使它冷却降温到5°C,金属丝的长度经历了怎样的变化?最后的长度比原长度伸长多少?P7页 ⑴、(60-15)×0.002=0.09(mm) ⑵、0.09-(60-5) ×0.002 =0.09-0. 11 =-0.02(mm) 答:最后的长度比原长度伸长-0.02mm. 4、一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米.试用科学计数法表示1个天文单位是多少千米(保留4个有效数字).P7页 1.4960(亿千米)保留4个有效数字 ≈1.496×108(千米) ∴一个天文单位约是1.496×108千米. 不等式与不等式组(应用题) 5、某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?P54页 设这时至少已售出X辆自行车. 275X﹥250×200 275X﹥50000 X﹥181.11. ∵ X为整数 ∴ X=182 答:这时至少已售出182辆自行车. 6、采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火线燃烧速度是1厘米/秒,工人转移的速度是5米/秒,导火线至少需要多长? 设导火线至少需要X米,得 400÷5≤X/0.01 80≤X/0.01 X≥0.8 答:导火线至少需要0.8米. 7、一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度V 不变,V满足什么条件?P54页 设静水速度为V,得 (3+V)×10 ÷ (V-3)﹥10 (3+V)×10 ÷ (V-3)﹤12 V﹥33 答:静速V﹥33 ◆8、苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗.商家把售价至少定为多少,就能避免亏本?P54页 设商家把售价至少定为X元. 1.5≤(100%-5%)X 1.5≤0.95X X≥1.5789 答:商家把售价至少定为1.58元,就能避免亏本. ◆9、某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润至少增加100万元,人均创利至少增加6000元,前年全厂利润是多少? 设前年全厂利润为X万元.P55页 X÷280+0.6﹤(X+100)÷(280-40) 6X+1008﹤7(X+100) -x09X﹤-1008+100 -x09X﹤-308 X﹥308 答:前年全厂利润是308万元. ◆10、2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?(每年均按365天计算)P55页 设2008年空气质量良好的天数要比2002年至少增加X天. X≥365×(70%-55%) X≥365×15% X≥54.75 答:2008年空气质量良好的天数要比2002年至少增加55天. 11、有一个两位数,如果把它的个位数字a和十位数字b对调,那么什么情况下得到的两位数比原来的两位数大?什么情况下得到的两位数比原来的两位数小?什么情况下得到的两位数等于原来的两位数?P55页 10a+b﹥10b+a (1) 10b+a﹥10a+b (2) 10a+b=10b+a (3) a﹥b (1) b﹥a (2) a =b (3) ∴ (1)、当a﹥b时,得到的两位数比原来的两位数大 (2)、当 b﹥a时,得到的两位数比原来的两位数小 (3)、当 b=a时,得到的两位数等于原来的两位数 12、某次知识竞赛有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?P55页 设他至少要答对X道题. 10X-(20-X) ×5﹥90 10X-100+5X﹥90 15X﹥190 X﹥12.66…… ∵X为整数 ∴X=13 答:他至少要答对13道题 13、一件由黄金与白银制成的首饰重a克,商家称其中黄金含量不低于90%,黄金与白银的密度分别是19.3g/cm3与10.5g/cm3,列出不等式表示这件首饰的体积应满足什么条件.P56页 (提示:质量=密度×体积) V﹤0.9a÷19.3+0.1a÷10.5 ◆14、甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?P56页 设顾客的消费金额为X元 甲 100+(X-100)×0.9 乙 50+(X-50)×0.95 ∵ 甲 ﹥ 乙 ∴ 100+(X-100)×0.9﹥50+(X-50)×0.95 X﹤150 如:X﹤50时,在甲、乙店买都不优惠 当50﹤X﹤100时,在乙店买优惠 当100﹤X﹤150时,在乙店买优惠 当X﹥150时,在甲店买优惠 15、一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完.李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?P60页 设李永每天读(X+3)页,张力每天读X页 7X﹤98 (1) 7(X+3)﹥98 (2) X﹤14 (1) X﹥11 (2) ∴ 不等式解集为11﹤X﹤14 ∵ X为整数 ∴ X=12,13 答:张力平均每天读12,13页书. 16、3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?P60页 设每个小组原先每天生产X件产品. 3X×10﹤500 (1) 3(X+1)×10﹥500 (2) X﹤50/3 (1) X﹥47/3 (2) ∴ 47/3 ﹤X﹤50/3 ∵ X为整数 ∴ X=16 答:每个小组原先每天生产16件产品. 17、某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%~20%,进价的范围是什么(精确到1元)?P62页 设进价X元. X+10%X=150 (1) X+20%X=150 (2) X≈136 (1) X=125 (2) ∴ 进价范围是125元~136元. ◆18、用每分钟可抽1.1吨水的A型抽水机来抽水,半小时可以抽完;如果用B型抽水机,估计20分到22分可以抽完.B型抽水机比A型抽水机每分钟多抽多少吨水?P63页 设B型抽水机每分钟可抽X吨水. 20≤1.1×30/X≤22 20X≤1.1×30 22X≥1.1×30 20X≤33 22X≥33 X≤1.65 X≥1.5 ∴ 1.5≤X≤1.65 1.5-1.1=0.4 1.65-1.1=0.55 ∵设B型抽水机比A型抽水机每分钟多抽Y吨水. ∴0.4≤Y≤0.55 答:B型抽水机比A型抽水机每分钟多抽多少0.4~0.55吨水.x09 ◆19、把一些书分给几个学生,如果每人分3本书,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?P64页 设这些书有X本,学生有Y人. 3Y+8=X (1) 5(Y-1)+3=X (2) 3Y+8=X (1) 5Y-X =2 (2) (2)-(1)得2Y=10 Y=5 把Y=5代入(1)得 15+8=X X=23 ∴ X=23 Y=5 答:这些书有23本?学生有5人? 列方程解应用题 1、运送29.5吨煤,先用一辆载重4吨汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完? 设还要运x次才能完 . 29.5-3×4=2.5x 17.5=2.5x x=7 答:还要运7次才能完 2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米 3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个 4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵? 平均每行梨树有x棵 6x-52=20 6x=72 x=12 平均每行梨树有12棵 10、一块三角形地的面积是840平方米,底是140米,高是多少米? 高是x米 140x=840*2 140x=1680 x=12 高是12米 11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁 30=6(x-3) 6x-18=30 6x=48 x=8 女儿今年8岁 13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车? 需要x时间 50x=40x+80 10x=80 x=8 需要8时间 14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元? 苹果x 3x+2(x-0.5)=15 5x=16 x=3.2 苹果:3.2 梨:2.7 15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点? 甲x小时到达中点 50x=40(x+1) 10x=40 x=4 甲4小时到达中点 16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度. 乙的速度x 2(x+15)+4x=60 2x+30+4x=60 6x=30 x=5 乙的速度5 17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米? 原来两根绳子各长x米 3(x-15)+3=x 3x-45+3=x 2x=42 x=21 原来两根绳子各长21米 18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元? 每只篮球x 7x+10x/3=248 21x+10x=744 31x=744 x=24 每只篮球:24 每只足球:8 1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完? 还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 还要运7次才能完 2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米 3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个 4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵? 平均每行梨树有x棵 6x-52=20 6x=72 x=12 平均每行梨树有12棵 10、一块三角形地的面积是840平方米,底是140米,高是多少米? 高是x米 140x=840*2 140x=1680 x=12 高是12米 11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁 30=6(x-3) 6x-18=30 6x=48 x=8 女儿今年8岁 13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车? 需要x时间 50x=40x+80 10x=80 x=8 需要8时间 14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元? 苹果x 3x+2(x-0.5)=15 5x=16 x=3.2 苹果:3.2 梨:2.7 15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点? 甲x小时到达中点 50x=40(x+1) 10x=40 x=4 甲4小时到达中点 16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度. 乙的速度x 2(x+15)+4x=60 2x+30+4x=60 6x=30 x=5 乙的速度5 17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米? 原来两根绳子各长x米 3(x-15)+3=x 3x-45+3=x 2x=42 x=21 原来两根绳子各长21米 18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元? 每只篮球x 7x+10x/3=248 21x+10x=744 31x=744 x=24 每只篮球:24 每只足球:8 1、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元 设甲可以装x吨,乙可以装y吨,则 2x+3y=15.5 5x+6y=35 得到x=4 y=2.5 得到(3x+5y)*30=735 2、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几? 原价销售时增加X% (1-10%)*(1+X%)=1 X%=11.11% 为了使销售总金额不变.销售量要比按原价销售时增加11.11% 3、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少? 设原价为x元 (1-10%)x-40=0.5x x=100 答:原价为100元 4、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克? 设加盐x克 开始纯盐是40*8%克 加了x克是40*8%+x 盐水是40+x克 浓度20% 所以(40*8%+x)/(40+x)=20% (3.2+x)/(40+x)=0.2 3.2+x=8+0.2x 0.8x=4.8 x=6 所以加盐6克 5、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元.问该商贩当初买进多少个鸡蛋? 设该商贩当初买进X个鸡蛋. 根据题意列出方程: (X-12)*0.28-0.24X=11.2 0.28X-3.36-0.24X=11.2 0.04X=14.56 X=364 答:该商贩当初买进364个鸡蛋. 6、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套? 设安排生产甲的需要x人,那么生产乙的有(85-x)人 因为2个甲种部件和3个乙种部件配一套,所以 所以生产的甲部件乘以3才能等于乙部件乘以2的数量 16*x*3=10*(85-x)*2 解得:x=25 生产甲的需要25人,生产乙的需要60人! 7、红光电器商行把某种彩电按标价的八折出售,仍可获利20%.已知这种彩电每台进价1996元.那么这种彩电每台标价应为多少元? 设标价为X元. 80%X=1996×(1+20%) 80%X= 2395.2 X=2994 8、某商店把某种商品按标价的8折出售,可获利20%.若该商品的进价为每件22元,则每件商品的标价为多少元? :设标价为X元. 80%X=22×(1+20%) 80%X= 26.4 X=33 9、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒? (180+160)/(20+24)=7.28秒 10、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止.已知狗的速度为15km/h,求此过程中,狗跑的总路程. 首先要明确,甲乙的相遇时间等于狗来回跑的时间 所以狗的时间=甲乙相遇时间=总路程/甲乙速度和 =5km/(5km/h+3km/h)=5/8h 所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km 所以甲乙相遇狗走了75/8千米 一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度 小亮此时在山脚下测得的温度是5度 已知该地 区的高度每增加100M,气温大约下降0.6度 这座山峰的高度是? 当气温每上升1度时,某种金属丝伸长0.002MM 反之, 当温度每下降1度时,金属丝缩短0.002MM.把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化? 最后的长度比原来长度伸长多少? 一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地. (1)如果乘客中途不换车要付车费多少元? (2)如果中途乘客换乘一辆出租车,他在何处换比较合算?算出总费用与(1)比较. 已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比. (27.38-25.35)×100%÷25.35≈8% 购票人 50人以下 50-100人 100人以上 每人门票价 12元 10元 8元 现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元.两个旅游团各有几人? 【解】 因为864>8×100,可知两团总人数超过100人,因而两团总人数为864÷8=108(人). 因为108×10=1080<1142,108×12=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人. 假设两团都大于 50人,则分别付款时,应付108×10=1080(元),实际多付了1142-1080=62(元).这是少于50人的旅游团多付的钱. 因此,这个旅游团的人数为:62÷(12-10)=31(人),另一个旅游团人数为108-31=77(人). 1,有一只船在水中航行不幸漏水.当船员发现时船里已经进了一些水,且水仍在匀速进入船内.若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完.现在要求2.5小时淘完,要用多少人淘水? 答案:11个人 解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能2.5小时淘完. 8*c*5=1/2*a+5*b (1) 10*c*3=1/2*a+3*b (2) x*c*2.5=1/2*a+2.5*b (3) (1)-(2)得到b=5c (4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c (5) 把(4)(5)代入(3),最后整理的x=11 2.快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米? 答案:快车行完全程,慢车走了全程的6/7; 同比可知: 快车行完全程的2/3时,慢车应走了6/7*2/3(即4/7),还剩余3/7,全程的3/7也就是已知条件180,全程即为180/(3/7)=420! 3,某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补.某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元?(精确的1元) 答案:设他现在可以贷款的数额是x元. 0.5(0.06x*6)+x=20000 0.18x+x=20000 1.18x=20000 x≈16949 4,将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关系.(字数不少于200) 答案:连接A B1 ∵AC=AC1 ∴S△B1AC=S△B1AC1 又∵CB1=CB ∴S△B1AC=S△ABC ∴S△B1C1C=2S△ABC 同理可得S△AA1C1=S△BA1B1=2S△ABC ∴S△A1B1C1=7S△ABC 同理S△A2B2C2=7S△A1B1C1=49S△ABC ∴S△AnBnCn=7^nS△ABC 5,将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关
2023-07-11 00:10:281