- 可桃可挑
-
向量加法a+b=(x+o,y+p,z+q)
向量减法a-b=(x-o,y-p,z-q)
向量乘法(高中就是数量积或点积)a*b=(xo,yp,zq)
向量没有除法
- gitcloud
-
http://wenku.baidu.com/link?url=9pD9N-vJnHol1OpZ6BQ5lb_53SFuV-l8IoLXK5xfIZSQNCJw3z5jVWDhPK-GdU2oXxW_zsnSISYne86ur6ydI8wQ1w79t_zqjlU_ibQsfmK
向量运算法则是什么?
①三角形定则:三角形定则主要是将各个向量依次按照首位顺序相互连接,最后得出的结果为第一个向量的起点指向最后一个向量的重点,这种解法则是被称之为三角形定则。②平行四边形定则:而平行四边形定则则是选择以向量的两个边作为平行四边形,而结果则是作为公共起点的一个对角线,平行四边形定则还能解决向量的减法。其中是将向量平移到公共起点上面,然后以向量的两个边作为平行四边形,最终由减向量的重点指向被减向量的重点,而这个平行四边形定则只是可以用来做两个非零非共线向量的加减。相关定义1、滑动向量沿着直线作用的向量称为滑动向量。2、固定向量作用于一点的向量称为固定向量(亦称胶着向量)。3、位置向量对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。4、方向向量直线l上的向量a以及与向量a共线的向量叫做直线l上的方向向量。2023-05-13 23:20:161
向量是什么?向量怎么运算?
怎么说呢,向量就是这样的一种量,既有大小,又有方向 一般用一条有方向的线段,即有向线段表示,有向线段的长度表示向量的大小 有向线段的方向表示向量的方向 向量的大小叫做向量的模,一般用一个绝对值号表示,比如|a| 模为1的向量叫做单位向量,模为0的向量角做零向量,零向量的方向是任意的 我们涉及的都是自由向量 向量的运算有加减法、数乘、数量积、向量积、混合积等 向量可以用坐标表示. 反正一两句也说不明白,如有问题,可探讨.2023-05-13 23:20:281
向量的运算的所有公式有哪些?
01 向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 向量的数量积的运算律 a·b=b·a(交换律) (λa)·b=λ(a·b)(关于数乘法的结合律) (a+b)·c=a·c+b·c(分配律) 向量的数量积的性质 a·a=|a|的平方。 a⊥b〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的向量积运算律 a×b=-b×a (λa)×b=λ(a×b)=a×(λb) a×(b+c)=a×b+a×c. (a+b)×c=a×c+b×c.2023-05-13 23:20:341
向量运算法则是什么?
向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”,例如:a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。向量的乘法:实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同。向量加法的运算律:1、交换律:a+b=b+a。2、结合律:(a+b)+c=a+(b+c)。3、加减变换律:a+(-b)=a-b。4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。2023-05-13 23:20:411
向量有哪些运算公式?
平面向量数量积的坐标表示是:若a=(x₁,y₁),b=(x₂,y₂),则a·b=x₁·x₂+y₁·y₂。已知两个非零向量a,b,那么|a||b|cosθ(θ是a与b的夹角)叫作a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。向量在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。以上内容参考:百度百科——向量2023-05-13 23:20:541
向量及其运算
向量的表示 : 以 为起点、 为终点的有向线段表示的向量记为 , 有时也用一个黑体字母(书写时, 在字母上面加一箭头)来表示(见图1 ), 如 a 或 。 向量的模 : 向量的大小(数学上指有向线段的长度)叫作向量的模,记作|a|, 。 模为1的向量称为 单位向量 ,记作 e。 模为0的向量称为 零向量 ,记作 0。 零向量的方向可以看作是任意的。 向量 a 、 b 的始点重合, 在两向量的所在平面上, 若一个向量逆时针方向转过角度 θ后可与另一个向量正向重合(见图2), 则称θ为 向量 a 、 b 的夹角, 记作(a, b), 即 θ = ( ) = ( ) (0≤ θ ≤π) 如果向量 的始点A与终点B在u轴上的投影分别为A′、B′(见图3), 则u轴上的有向线段A′B′的值A′B′称为向量AB在u轴上的投影, 记作 = A′B′,u轴称为 投影轴 。 定理1 向量 在 u 轴上的投影等于向量的模乘以u轴与向量 的夹角 θ 的余弦,即 cos θ a 可分解为三个分别平行于x轴、y轴和z轴的向量 a 、 a 和 a , 它们称为a在 x 轴、y 轴和 z 轴的三个 分向量 , 显然 a = a + a + a (见图4)。 若用 i 、 j 和 k 分别表示与 x 轴、 y 轴和 z 轴正向一致的三个单位向量, 称它们为 基本单位向量 , 则有 a =( ) i , a = ( ) j , a = ( ) k , 因此 a = a + a + a = ( ) i + ( ) j + ( ) k = & i + & j + & k , 称上式为向量 a 按 基本单位向量的分解式 或 a 的 向量表示式 。 将 、 、 称为向量 a 的 坐标 , 记为 a = ( , , ) , 也称为向量a的 坐标表示式 。 三个 分向量 ( a , a , a ) a = a + a + a 向量表示式 a = & i + & j + & k 坐标表示式 a = ( , , ) 设 a 为任意一个非零向量, 又设 为 a 与三坐标轴正向之间的夹角(0≤α, β, γ <π), 如图5所示, 则 分别为向量 a 的 方向角 。 由于向量坐标就是向量在坐标轴上的投影, 故有 = | a | , = | a | , = | a | , 其中, 称为向量 a 的 方向余弦 , 通常用来表示向量的方向。 由模的定义, 可知向量 a 的模为 | a | = = 或 = = = 由此可得 即任一向量的方向余弦的平方和为 1。 单位向量 定义1 给定向量 a 与 b , 我们将 |a| 与 |b| 及它们的夹角θ的余弦的乘积,称为向量 a 与 b 的 数量积 , 记为 a · b , 即 。 (1) ```````````` ( ) (2) (3) 若 , , 则 。 (1) 交换律: (2) 分配律: (3) (其中 λ 是数) 若 , 则 = 0 定义2 若由向量 与 所确定的一个向量 满足下列条件(见图5): (1) 的方向既垂直于 又垂直于 , 的指向按右手规则从 转向 来确定; (2) 的模 ,则称向量 为向量 与 的向量积(或称 外积、 叉积 ), 记为 (1) 反交换律: (2) 分配律: (3) 结合律: (其中 λ 是实数) 注意 第二项为(-1) 由此可得: 若 , 则 即 (亦即a=λb, λ为实数)2023-05-13 23:21:091
向量的运算的所有公式是什么?
a=(x,y),b=(x",y")1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x",y+y")a+0=0+a=a向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").扩展资料:实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当 |λ| >1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的 |λ|倍。参考资料来源:百度百科-向量2023-05-13 23:21:161
向量的运算
设a=(x1,y1),b=(x2,y2)。 向量的加法满足平行四边形法则和三角形法则。OB+OA=OC。a+b=( , )。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”a=(x,y)b=(x",y") 则a-b=(x-x",y-y").如图:c=a-b 以b的结束为起点,a的结束为终点。交换律:a+(-b)=a-b 实数λ和向量a的叉乘乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣。 当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。实数p和向量a的点乘乘积是一个数。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。需要注意的是:向量的加减乘除运算满足实数加减乘除运算法则。 定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则;若a、b共线,则。 向量的数量积的坐标表示:a·b=x·x"+y·y"。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。2.向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|与|a|·|b|不等价4.由 |a|=|b| ,不能推出a=b,也不能推出a=-b,但反过来则成立。 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|(此处与数量积不同,请注意),若a×b=0,则a、b平行。向量积即两个不共线非零向量所在平面的一组法向量。 运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x2,y2,z2)则A*B=a b cx1 y1 z1x2 y2 z2向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。 定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c混合积具有下列性质:1.三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)2.上性质的推论:三向量a、b、c共面的充要条件是(abc)=03.(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)例题正方形ABCD,EFGA,CHIK首尾相连,L是EH中点,求证LB⊥GK?设AE=a﹙向量﹚, AG=a", AD=c, AB=c", CH=b,CK=b"有 aa"=bb"=cc"=0, a2=a"2, b2=b"2 ,c2=c"2,a"b=ab",a"c"=-ac,a"c=ac", bc=b"c". b"c=-bc"﹙*﹚EH=-a+c+c"+b LB=EH/2-b-c=﹙-a-c+c"-b﹚/2, GK=-a"+c"+c+b"从﹙*﹚:﹙-a-c+c"-b﹚·﹙-a"+c"+c+b"﹚=……=0. ∴LB⊥GK 由于二重向量叉乘的计算较为复杂,于是直接给出了下列化简公式以及证明过程: 给定空间内四个向量a、b、c、d,则这四个向量之间满足如下关系: 证明:由混合积的性质可知 (即把c×d看成一个新的向量e,利用性质(a×b)·e=a·(b×e))再根据二重向量积的性质可知该公式可用于证明三维的柯西不等式证明:令公式中a=c、b=d,则:设 ,那么:即 等号成立的条件是 ,即a、b共线( 或b=0)2023-05-13 23:21:241
向量的基本运算公式是什么?
交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。相关信息:几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。2023-05-13 23:21:371
关于向量(矢量)向量(矢量)的运算法则是什么?特别是乘法!
一、向量的概念 日常中我们所遇到的量可以分为两类:一类量用一个数值便可以完全表示,比如面积、温度、时间或质量等都属于这一类,这一类质量称为数量(或标量);另一类量,除了要用一个数以外,还要指明它的方向才能够完全表示,比如速度、加速度、力等都属于这一类,这一类的量称 为向量(或矢量). 向量可以用一条有向线段形象地表示,线段的方向表示向量的方向,它的长度称为向量的模.向量常记为(a→),(b→)或a,b等,有时也用(A→B)表示一个向量,A是起点,B是终点.从A到B的指向表示(a→)的方向.向量(A→B)的模记作|(A→B)|.模等于零的向量叫做零向量,记作0或(0→).零向量的方向可以看作是任意的.模等于1的向量叫做单位向量.对于非零向量(a→),我们用(a(0)→)表示a同向的单位向量,简称为a的单位向量.在直角坐标系中,向量(O→M) 叫做点M的向径,记做r或(r→) .于是空间每一点M,对应着一个向径 ;反之,每一向径r,对应着一个确定的点M.两个向量的方向相同、模相等时,称它们是相等的向量,记作(a→) =(b→) .因此,一个向量经过平移后与原向量相等.与的模相同而方向相反的向量叫做 的负向量,记作(a→)=-(c→) . 二、向量及运算 1、向量的加法 两向量(O→A) 与(O→B)的和,是以这两向量做相邻两边的平行四边形的对角线向量(O→C) ,记作(O→A)+(O→B)=(O→C) 这种方法叫做向量加法的平行四边形法则,由于平行四边形的对边平行且相等,我们还可以这样来作出两向量的和:作 (O→A)=(a→).以(a→)的终点为起点作(b→)=(A→C) ,连接OC ,就得(O→C) .这一方法叫做向量加法的三角形法则.向量的加法满足交换律、结合律.如设有向量(a→) ,(b→) 即有(a→)+(b→)=(b→)+(a→) [(a→)+(b→)]+(c→)=(a→)+[(b→)+(c→)]. 特别地,若(a→) 与(b→) 共线(平行或在同一条直线上),则规定它们的和是这一个向量:当(a→) 与(b→) 的指向相同时,和向量的方向与原来两向量的方向相同,其模等于两向量的模的和;当(a→) 与(b→) 的指向相反时,和向量的方向与较长的向量的方向相同,而模等于较大向量的模减去较小向量的模. 2.向量的减法 减法是加法的逆运算,若(b→)+(c→)=(a→) ,则定义(c→) 为向量(a→) 与(b→) 之差,记作(c→)=(a→)-(b→). 由于(a→)+[-(b→)]=(a→)-(b→) ,所以由加法的法则可得减法的相应法则:以(a→)及-(b→) 为邻边作平行四边形,则对角线向量就是(c→) .若(a→) 与(-b→) 的起点相同,由(b→) 的终点到(a→) 的终点所成的向量也为(a→)-(b→).此法则称为减法的三角形法则.2023-05-13 23:21:491
向量的基本运算
1.|a+b|=|a-b|,得|a+b|²=|a-b|²|a+b|²=(a+b)²=a²+2ab+b²,|a-b|²=(a-b)²=a²-2ab+b²得ab=0,即a⊥b,于是|b|=42(1),c∥d,即c=μd,3a+b=2μa+kμb,得3=2μ,1=kμ,得k=2/3(2)c⊥d,即cd=0,cd=(3a+b)(2a+kb)=6a²+(2+3k)ab+kb²=6|a|²+(2+3k)|a||b|cos60°+k|b|²=24+9k+6+9k=0得k=-5/32023-05-13 23:22:092
向量的坐标运算公式是什么?
向量的坐标运算公式:a+b=(x+m,y+n)。我的文件助手 15:35:00向量最初被应用于物理学.很多物理量如力速度位移以及电场强向量度磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。向量的坐标表示这个向量的有向线段的终点坐标减去始点的坐标。在平面直角坐标系中,分别取x轴和y轴上的基地向量i、j;作一向量a,有且只有一对实数(x,y)是a=xi+yj,把这对实数(x,y)叫做向量a的坐标。向量的运算规则:向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0<=>a⊥b(6)a=kb<=>a//b(7)e1·e2=|e1||e2|cosθ=cosθ希望我的回答对你有所帮助!2023-05-13 23:22:151
向量的加减乘除运算法则是什么
设a=(x,y),b=(x",y")。加法向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被向量的减法减”a=(x,y)b=(x",y")则a-b=(x-x",y-y").如图:c=a-b以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。[2]需要注意的是:向量的加减乘除运算满足实数加减乘除运算法则。数量积定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b/|a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。向量的数量积的坐标表示:a·b=x·x"+y·y"。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。2.向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|与|a|·|b|不等价4.由|a|=|b|,不能推出a=b,也不能推出a=-b,但反过来则成立。向量积定义:两个向量a和b的向量积向量的几何表示(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x1,y1,z1)则A*B=abcx1y1z1x1y1z1向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。2023-05-13 23:22:401
向量的坐标表示及其运算的公式
首先你后面那个说的是对的。然后用这个结论就可以得到前面的答案。假设a(x1,y1),b(x2,y2).那么oa向量就是(x1,y1),ob向量就是(x2,y2).因为ab=ob-oa,所以ab向量是(x2-x1,y2-y1)用文字描述就是向量坐标=末点的坐标-起始点的坐标2023-05-13 23:22:482
向量坐标运算公式总结是什么?
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为a·b=a1b1+a2b2+……+anbn。在一个向量空间V中,定义为V*V 的正定对称双线性形式函数即是V的数量积,而添加有一个数量积的向量空间即是内积空间,点积适用于交换律、结合律、分配律。点积有两种定义方式:代数方式和几何方式,通过在欧氏空间中引入笛卡尔坐标系,向量之间的点积既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来求解。混合积具有下列性质:1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)。2、上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0。3、(abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)。2023-05-13 23:23:141
向量的减法运算是怎么样的?
向量的减法:如果a、b是互为相反的向量,a+b=0。a=(x,y),b=(x" ,y),则a-b=(x-x" ,y-y" )。c=a-b,以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一一个向量,记作入a,且1 λa1=1λ1. 1a1。当λ>0时,λa与a同方向当 λ<0时,λa与a反方向。三角形定则解决向量加减的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。坐标系解向量加减法:在直角坐标系里面,定义原点为向量的起点.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,A(X1,Y1) B(X2,Y2),则A+B=(X1+X2,Y1+Y2),A-B=(X1-X2,Y1-Y2)。2023-05-13 23:23:341
关于向量点乘运算
向量:u=(u1,u2,u3) v=(v1,v2,v3)叉积公式:u x v = { u2v3-v2u3 , u3v1-v3u1 , u1v2-u2v1 }点积公式:u * v = u1v1+u2v2+u3v33=lul*lvl*COS(U,V)对于向量的运算,还有两个“乘法”,那就是点乘和叉乘了。点乘的结果就是两个向量的模相乘,然后再与这两个向量的夹角的余弦值相乘。或者说是两个向量的各个分量分别相乘的结果的和。很明显,点乘的结果就是一个数,这个数对分析这两个向量的特点很有帮助。如果点乘的结果为0,那么这两个向量互相垂直;如果结果大于0,那么这两个向量的夹角小于90度;如果结果小于0,那么这两个向量的夹角大于90度。叉乘运算公式向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则向量a·向量b=a1a2+b1b2+c1c2 向量a×向量b= | i j k| |a1 b1 c1| |a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。叉乘的意义就是通过两个向量来确定一个新的向量,该向量与前两个向量都垂直。2023-05-13 23:23:472
向量相乘有哪些公式?
向量相乘公式: 向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。向量积公式:设向量a=(x1,y1),向量b=(x2,y2),a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)。向量之间不叫乘积,而叫数量积,如a·b叫做a与b的数量积或a点乘b。向量积|c|=|a×b|=|a||b|sin。向量相乘分内积和外积:内积:ab=丨a丨丨b丨cosα,内积无方向,叫点乘。外积:a*b=丨a丨丨b丨sinα,外积有方向,叫*乘。那个读差,即差乘,方便表达所以用差。另外,外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积*cos夹角=横坐标乘积+纵坐标乘积。向量的定义: 是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。2023-05-13 23:23:541
向量的计算公式
向量的计算公式:OB+OA=OC。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。矢量(vector)是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。在计算机中,矢量图可以无限放大永不变形。2023-05-13 23:24:211
向量计算公式
向量的加法满足平行四边形法则和三角形法则.向量的加法OB+OA=OC.a+b=(x+x",y+y").a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0向量的减法AB-AC=CB.即“共同起点,指向被向量的减法减”a=(x,y)b=(x",y")则a-b=(x-x",y-y").3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.当λ>0时,λa与a同方向;向量的数乘当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.4、向量的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x"+y·y".向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b〈=〉a·b=0.|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c.3、|a·b|≠|a|·|b|4、由|a|=|b|,推不出a=b或a=-b.5、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a垂直b〈=〉a×b=|a||b|.向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);a×(b+c)=a×b+a×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.2023-05-13 23:24:291
有关向量的简单运算?
(a+b)x(b+c).(c+a)=ax(b+c).(c+a) + bx(b+c).(c+a)=axb.(c+a)+axc .(c+a) + bxb .(c+a)+bxc .(c+a)=axb .c + axb.a + axc.c + axc.a + bxb.c + bxb.a + bxc.c +bxc.a=axb.c + 0 + 0 + 0 + 0 + 0 + 0 + bxc.a=2axb.c = 2* 2 =42023-05-13 23:24:382
向量的公式有哪些?
楼主:设a=(x,y),b=(x",y").1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x",y+y"). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积 定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]. 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a·b=x·x"+y·y". 向量的数量积的运算率 a·b=b·a(交换率); (a+b)·c=a·c+b·c(分配率); 向量的数量积的性质 a·a=|a|的平方. a⊥b 〈=〉a·b=0. |a·b|≤|a|·|b|. 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2. 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c. 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0. 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0. a∥b〈=〉a×b=0. 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的.祝您步步高升2023-05-13 23:25:003
向量相乘公式是啥?
向量相乘公式如下:,(0°≤θ≤180°)向量积(向量相乘),数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。扩展资料:向量积性质:一、几何意义及其运用叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。二、代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。2023-05-13 23:25:061
向量相乘公式
向量相乘公式是:对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,其运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。2023-05-13 23:25:281
向量a乘以向量b的运算怎么写啊?
向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量2023-05-13 23:25:341
向量的坐标表示及其运算的公式
首先你后面那个说的是对的。 然后用这个结论就可以得到前面的答案。 假设A(x1,y1),B(x2,y2). 那么OA向量就是(x1,y1),OB向量就是(x2,y2). 因为AB=OB-OA, 所以AB向量是 (x2-x1,y2-y1)用文字描述就是 向量坐标=末点的坐标 - 起始点的坐标2023-05-13 23:25:482
向量相乘公式
向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量的和垂直。向量a=(x1,y1),向量b=(x2,y2)a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b希望能帮到你,满意望采纳哦。2023-05-13 23:26:162
向量计算时,可以使用乘法结合律吗?为什么
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。平面向量的所有公式归纳总结1向量的加法1、向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x",y+y").a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").3向量的的数量积1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.2、向量的数量积的坐标表示:a•b=x•x"+y•y".3、向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);4、向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.5、向量的数量积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.(2)向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.(3)|a•b|≠|a|•|b|(4)由 |a|=|b| ,推不出 a=b或a=-b.4数乘向量1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.5向量的向量积1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量积运算律2023-05-13 23:26:252
平面向量的线性运算是什么?
向量的加,减,数乘运算统称为向量的线性运算2023-05-13 23:26:552
向量坐标加法公式是?
已知a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即a+b=(x1+x2,y1+y2)。 同理可得a-b=(x1-x2,y1-y2)。 这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。2023-05-13 23:27:041
向量运算
解题思路索引:1单位向量:模值为单位“1”向量。2证基底即证两个向量相互垂直,即向量点积为零。 3共线的话就是两个算式向量的叉积为零,计算k即可。 具体解法:(1)1*m-2*n=1 2*m+5*n=11 所以3(1,2)+(-2,5)=(1,11) 即3a+b=c(2)因为第一个问已经证明了a、b两个向量可以是一组基地,那么,就以a、b向量为基底构成一个坐标系,那么ka+b和4a+(k+1)b就可以表示为在以a、b为基底的坐标系中的两个向量(k,1)和(4,k+1)。那么要使着两个向量共线,则需要(k,1)×(4,k+1)=0 即:4k+k(k+1)+4+(k+1)=0,求解,可得k=-1或k=-5。2023-05-13 23:27:135
向量长度计算公式
a be nth dimensional vectora=(a1,a2,...,an)|a|=√(a1^2+a2^2+...+an^2)2023-05-13 23:27:294
向量数量积公式是什么
1、定义:ab=|a|x|b|xcosθ 其 θ 向量 a、b夹角;2、公式:向量 a、b 坐标别(a1a2an)、(b1b2bn);3、ab=a1b1+a2b2+.....+anbn。拓展资料向量在数学与物理中,既有大小又有方向的量叫做向量(亦称矢量),在数学中与之相对应的是数量,在物理中与之相对应的是标量。2023-05-13 23:27:3810
有关向量的知识
定义 数学中,既有大小又有方向的量叫做向量(与矢量不同,没有起点终点)(英文:vector) 注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。 ("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。 在C++中,也有向量。 向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强 向量度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。编辑本段表示 1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示 向量表示,手写用在a、b、c…等字母上加一箭头表示。 2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。 向量的几何表示这种具有方向和长度的线段叫做有向线段。) 3、坐标表示: 1) 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。 2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z) 向量的坐标表示,使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, z)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, z),也就是点P的坐标。向量OP称为点P的位置向量。 3) 当然,对于空间多维向量,可以通过类推得到,此略.编辑本段向量简介 在数学中,通常用点表示位置,用射线表示方向。在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向。向量的表示常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。向量也可用字母a、b、c等表示,或用表示 向量机器模型向量的有向线段的起点和终点字母表示。向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。 平行向量与相等向量 方向相同或相反的非零向量叫做平行向量。向量a、b、c平行,记作a∥b∥c。0向量长度为零,是起点与终点重合的向量,其方向不确定,数学上规定0与任一向量平行。 长度相等且方向相同的向量叫做相等向量。向量a与b相等,记作a=b。零向量与零向量相等。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。 向量空间的同构 在域F上的两个向量空间V与V" ,如果存在一个双射φ:V→V"并且φ(αu+bv)=αφ(u)+bφ(v),a,b∈F,u,v∈V.这样V与V" 便是同构。 向量线性映射 给两个向量空间V和W在同一个F场,设定由V到W的线性变换或“线性映射” . 这些由V到W的映射都有共同点就是它们保持总和及标量商数。这个集合包含所有由V到W的线性映像,以 L(V,W) 来描述,也是一个F场里的向量空间。当V及W被确定后,线性映射可以用矩阵来表达。同构是一对一的一张线性映射.如果在V 和W之间存在同构, 我们称这两个空间为同构;他们根本上是然后相同的。一个在F场的向量空间加上线性映像就可以构成一个范畴,即阿贝尔范畴。 概念化及额外结构 研究向量空间一般会涉及一些额外结构。额外结构如下: 一个实数或复数向量空间加上长度概念。就是范数称为赋范向量空间。 一个实数或复数向量空间加上长度和角度的概念,称为内积空间。 一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。 一个向量空间加上双线性算子(定义为向量乘法)是个域代数。 子空间及基 一个向量空间V的一个非空子集合W在加法及标量乘法中表现密闭性,被称为V的线性子空间。给出一个向量集合B,那么包含它的最小子空间就称为它的扩张,记作span(B)。给出一个向量集合B,若它的扩张就是向量空间V, 则称B为V的生成集。一个向量空间V最大的线性独立子集,称为这个空间的基。若V=0,唯一的基是空集。对非零向量空间 V,基是 V 最小的生成集。如果一个向量空间 V 拥有一个元素个数有限的生成集,那么就称V是一个有限维空间。向量空间的所有基拥有相同基数,称为该空间的维度。例如,实数向量空间:R0,R1,R2,R3。。。,R∞,。。。中,Rn 的维度就是n。空间内的每个向量都有唯一的方法表达成基中元素的线性组合。把基中元素排列,向量便可以座标系统来呈现。编辑本段向量的模和数量 向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。 注: 1、向量的模是非负实数,是可以比较大小的。 2、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。例如,“向量AB>向量CD”是没有意义的。编辑本段各种向量单位向量 长度为单位1的向量,叫做单位向量.与向量a同向或反向,且长度为单位1的向量,叫 单位向量做a方向上的单位向量,记作a0,a0=a/|a|。零向量 长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。相等向量 长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b. 规定:所有的零向量都相等. 当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。自由向量 始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代 向量表原来的向量。 在自由向量的意义下,相等的向量都看作是同一个向量。 数学中只研究自由向量。滑动向量 沿着直线作用的向量称为滑动向量。固定向量 作用于一点的向量称为固定向量(亦称胶着向量)。 向量位置向量 对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。方向向量 直线l上的向量a以及与向量a共线的向量叫做直线l上的方向向量相反向量 与a长度相等、方向相反的向量叫做a的相反向量,记作-a。有 -(-a)=a; 零向量的相反向量仍是零向量。平行向量 方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b. 零向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定:零向量与任一向量平行. 平行于同一直线的一组向量是共线向量。若a=(x,y)b=(m,n)。 a//b=>a·b=xn-ym=0共面向量 平行于同一平面的三个(或多于三个)向量叫做共面向量。 空间中的向量有且只有以下两种位置关系:⑴共面;⑵不共面。 只有三个或三个以上向量才谈共面不共面。法向量 直线l⊥α,取直线l的方向向量a,则向量a叫做 法向量平面α的法向量。编辑本段向量的运算 设a=(x,y),b=(x",y")。1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 向量的加法OB+OA=OC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被 向量的减法减” a=(x,y)b=(x",y") 则a-b=(x-x",y-y").3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 向量的数乘当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。4、向量的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。5、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a垂直b〈=〉a×b=|a||b|。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); a×(b+c)=a×b+a×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。2023-05-13 23:29:021
平面向量的线性运算
向量的线性运算:加法:求两个向量和的运算。三角形法则:平行四边形法则:加法 交换律: a→+b→=b→+a→加法结合律: (a→+b→)+c→=a→+(b→+c→)减法:减去一个向量相当于加上这个向量的相反向量。三角形法则:表示为: a→−b→=a→+(−b→)数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa→。运算律: λ(a→+b→)=λa→+λb→(λ1+λ2)a→=λ1a→+λ2a→。2023-05-13 23:29:091
关于向量点乘运算
向量:u=(u1,u2,u3) v=(v1,v2,v3)叉积公式:u x v = { u2v3-v2u3 , u3v1-v3u1 , u1v2-u2v1 }点积公式:u * v = u1v1+u2v2+u3v33=lul*lvl*COS(U,V)对于向量的运算,还有两个“乘法”,那就是点乘和叉乘了。点乘的结果就是两个向量的模相乘,然后再与这两个向量的夹角的余弦值相乘。或者说是两个向量的各个分量分别相乘的结果的和。很明显,点乘的结果就是一个数,这个数对分析这两个向量的特点很有帮助。如果点乘的结果为0,那么这两个向量互相垂直;如果结果大于0,那么这两个向量的夹角小于90度;如果结果小于0,那么这两个向量的夹角大于90度。叉乘运算公式向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则向量a·向量b=a1a2+b1b2+c1c2 向量a×向量b= | i j k| |a1 b1 c1| |a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。叉乘的意义就是通过两个向量来确定一个新的向量,该向量与前两个向量都垂直。2023-05-13 23:29:271
向量的运算公式有哪些?
向量的基本运算公式是:向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。2023-05-13 23:29:441
向量的运算的所有公式是什么?
1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。扩展资料:已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y22023-05-13 23:29:582
向量的运算公式?
向量的基本运算公式是:向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。2023-05-13 23:30:051
向量的运算的所有公式有哪些?
01 向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μ数对于向量的分配律(第二分配律):λ(a+b)=λa+λ数乘向量的消去律:1 如果实数λ≠0且λa=λb,那么a=b。2 如果a≠0且λa=μa,那么λ=μ。 向量的数量积的运算律 a·b=b·a(交换律) (λa)·b=λ(a·b)(关于数乘法的结合律) (a+b)·c=a·c+b·c(分配律) 向量的数量积的性质 a·a=|a|的平方。 a⊥b〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的向量积运算律 a×b=-b×a (λa)×b=λ(a×b)=a×(λb) a×(b+c)=a×b+a××c=a×c+b×c.2023-05-13 23:30:181
向量的运算包括哪几个公式?
向量的运算的所有公式是:1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。2023-05-13 23:30:511
向量的运算的所有公式是什么?
向量的运算的所有公式是:1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。2023-05-13 23:31:051
向量运算法则
向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。 向量是什么意思 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。 几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。 因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。2023-05-13 23:31:201
向量的运算的所有公式
向量的基本运算公式是:向量的加法OB+OA=OC。a+b=(x+x",y+y")。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。2023-05-13 23:31:281
数学中,向量有哪些运算?
加法减法和数乘。1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量的数量积求法已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y22023-05-13 23:31:401
向量怎么计算!
你好向量怎么计算!解:设a=(x,y),b=(x",y")。1、向量的加法a+b=(x+x",y+y")。2、向量的减法a=(x,y)b=(x",y")则a-b=(x-x",y-y")3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。有什么不懂请追问,我会为您详细解答,望采纳,谢谢!2023-05-13 23:31:481
向量有什么运算?
加法减法和数乘。1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量的数量积求法已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y22023-05-13 23:32:051
向量的运算法则
有加法、减法、数乘、数量积、向量积等法则。向量的加法满足平行四边形法则和三角形法则;向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。 它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。2023-05-13 23:32:131
向量及其运算
向量的表示 : 以 M1 为起点、 M2 为终点的有向线段表示的向量记为 M1 M2 , 有时也用一个黑体字母(书写时, 在字母上面加一箭头)来表示(见图1 ), 如 a 或 。 向量的模 : 向量的大小(数学上指有向线段的长度)叫作向量的模,记作|a|, 。 模为1的向量称为 单位向量 ,记作 e。 模为0的向量称为 零向量 ,记作 0。 零向量的方向可以看作是任意的。 向量 a 、 b 的始点重合, 在两向量的所在平面上, 若一个向量逆时针方向转过角度 θ后可与另一个向量正向重合(见图2), 则称θ为 向量 a 、 b 的夹角, 记作(a, b), 即 θ = ( ) = ( ) (0≤ θ ≤π) 如果向量 的始点A与终点B在u轴上的投影分别为A′、B′(见图3), 则u轴上的有向线段A′B′的值A′B′称为向量AB在u轴上的投影, 记作 = A′B′,u轴称为 投影轴 。 定理1 向量 在 u 轴上的投影等于向量的模乘以u轴与向量 的夹角 θ 的余弦,即 cos θ a 可分解为三个分别平行于x轴、y轴和z轴的向量 a 、 a 和 a , 它们称为a在 x 轴、y 轴和 z 轴的三个 分向量 , 显然 a = a + a + a (见图4)。 若用 i 、 j 和 k 分别表示与 x 轴、 y 轴和 z 轴正向一致的三个单位向量, 称它们为 基本单位向量 , 则有 a =( ) i , a = ( ) j , a = ( ) k , 因此 a = a + a + a = ( ) i + ( ) j + ( ) k = & i + & j + & k , 称上式为向量 a 按 基本单位向量的分解式 或 a 的 向量表示式 。 将 、 、 称为向量 a 的 坐标 , 记为 a = ( , , ) , 也称为向量a的 坐标表示式 。 三个 分向量 ( a , a , a ) a = a + a + a 向量表示式 a = & i + & j + & k 坐标表示式 a = ( , , ) 设 a 为任意一个非零向量, 又设 为 a 与三坐标轴正向之间的夹角(0≤α, β, γ <π), 如图5所示, 则 分别为向量 a 的 方向角 。 由于向量坐标就是向量在坐标轴上的投影, 故有 = | a | , = | a | , = | a | , 其中, 称为向量 a 的 方向余弦 , 通常用来表示向量的方向。 由模的定义, 可知向量 a 的模为 | a | = = 或 = = = 由此可得 即任一向量的方向余弦的平方和为 1。 单位向量 定义1 给定向量 a 与 b , 我们将 |a| 与 |b| 及它们的夹角θ的余弦的乘积,称为向量 a 与 b 的 数量积 , 记为 a · b , 即 。 由定义 1 可以推出: (1) ```````````` ( ) (2) a·a= a acos(a,a)= a ; (3) 若 a ≠0, b ≠0, 则a·b=0⇔a⊥b2023-05-13 23:32:191
什么是向量运算
解题思路索引:1单位向量:模值为单位“1”向量。2证基底即证两个向量相互垂直,即向量点积为零。3共线的话就是两个算式向量的叉积为零,计算k即可。具体解法:(1)1*m-2*n=12*m+5*n=11所以3(1,2)+(-2,5)=(1,11)即3a+b=c(2)因为第一个问已经证明了a、b两个向量可以是一组基地,那么,就以a、b向量为基底构成一个坐标系,那么ka+b和4a+(k+1)b就可以表示为在以a、b为基底的坐标系中的两个向量(k,1)和(4,k+1)。那么要使着两个向量共线,则需要(k,1)×(4,k+1)=0即:4k+k(k+1)+4+(k+1)=0,求解,可得k=-1或k=-5。2023-05-13 23:32:282