汉邦问答 / 问答 / 问答详情

DNA双螺旋结构的特点及其生物学功能是什么?

2023-07-05 06:57:59
CarieVinne

以下是我自己根据我们书上所写的归纳的,希望对你有帮助:

DNA双螺旋结构有如下几个特点:1、DNA是反向平行的互补双链结构,它的两条多聚核苷酸链在空间排布呈反向平行,碱基位于内侧,亲水的脱氧核糖基和磷酸基位于外侧,碱基间以A-T和G-C的方式互补配对;2、DNA双链是右手螺旋结构,DNA的两条多核苷酸链反向平行围绕同一中心轴互相缠绕,呈右手螺旋;3疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持。

DNA的生物学功能:DNA是遗传物质,是遗传信息的载体。

证据如下:1、DNA

分布在染色体内,是染色体的主要成分,而染色体是直接与遗传有关的。2、体细胞DNA含量为生殖细胞DNA含量的两倍,且含量十分稳定。3、DNA在代谢上较稳定不受营养条件、年龄等因素的影响。4、作用于DNA的理化因素可引起遗传特性的改变,这一点已经由Avery在1953年用肺炎双球菌转化实验证明。

肖振

DNA是一反向平行的互补双链结构

在DNA双链结构中,亲水的脱氧核糖基和磷酸基骨架位于双键的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合。

A=T,G≡C,这种碱基之间的配对关系叫碱基互补。对应的碱基处于同一平面,称碱基平面,碱基平面之间靠范德华力形成碱基堆积力(纵向的力)。

反向平行:

一条链

5"

3"

另一条链

3"

5"

DNA双链所形成的螺旋直径为2nm。螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为360o。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。双螺旋结构上有两条凹沟,深的称大沟,浅的称小沟。*

双螺旋结构的稳定横向靠两条链间互补碱

基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以碱基堆积力更为重要。

DNA是遗传物质,是遗传信息的载体。即作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。

黑桃花

DNA双螺旋结构的要点

(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,

相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。

所谓双螺旋就是针对二条主链的形状而言的。

(2)碱基对(base

pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T

间形成两个氢键。

DNA结构中的碱基对与Chatgaff的发现正好相符。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,

而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。

每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。碱基对具有二次旋转对称性的特征,即碱基旋转180°并不影响双螺旋的对称性。

也就是说双螺旋结构在满足二条链碱基互补的前提下,DNA的一级结构产并不受限制。这一特征能很好的阐明DNA作为遗传信息载体在生物界的普遍意义。

(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,

从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。

在大沟和小沟内的碱基对中的N

和O

原子朝向分子表面。

(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。

DNA分子结构特点是什么?

1.由两条反向平行的脱氧核苷酸长链构成右手螺旋结构,螺旋直径2nm;螺旋周期包含10对碱基。2.磷酸和脱氧核糖交替排列,在外侧构成构成骨架,碱基排列在内侧,碱基平面与螺旋轴垂直,螺距3.4nm;相邻碱基对平面的间距0.34nm。3.两条 DNA 链依靠彼此碱基之间形成的氢键而结合在一起,碱基对之间遵循碱基互补配对规律,A与T相配对,形成2个氢键,G与C相配对,形成3个氢键。4.疏水力和氢键维系DNA双螺旋的稳定,横向稳定靠碱基间的氢键维系,纵向靠碱基平面间的疏水性堆积力维持5.DNA 双螺旋的表面存在一个大沟和一个小沟,蛋白质分子通过这两个沟与碱基相识别。
2023-07-04 22:59:011

dna分子的结构特点

dna分子结构特点是:DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构;DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。 dna分子 dna分子又称去氧核糖核苷酸,是染色体主要组成成分,同时也是主要遗传物质。DNA病毒的遗传物质也是DNA,极少数为RNA。 dna分子功能 DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。
2023-07-04 22:59:101

dna分子结构特点dna分子有什么特点

1、稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。2、多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。3、特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 22:59:171

DNA的结构特点是(  ) A. 螺旋状 B. 杯状 C. 长条状 D. 球状

细胞核中能被碱性染料染成深色的物质叫做染色体,它是由DNA和蛋白质两种物质组成,DNA是主要的遗传物质,它的结构像一个螺旋形的梯子.一条染色体上包含一个DNA分子.一个DNA分子上包含有多个基因,基因是染色体上具有特定遗传信息的DNA片段.因此选项B、C、D均不符合题意. 故选:A.
2023-07-04 22:59:261

dna分子的结构是什么结构 有什么特点

双螺旋结构。分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。 dna分子的结构 dna分子的结构是双螺旋结构,脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。 DNA中的核苷酸中碱基的排列顺序构成了遗传信息。该遗传信息可以通过转录过程形成RNA,然后其中的mRNA通过翻译产生多肽,形成蛋白质。 DNA分子特性 稳定性 DNA分子的双螺旋结构是相对稳定的。这是因为在DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。另外,碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。 各个碱基对之间的这种纵向的相互作用力叫做碱基堆集力,它是芳香族碱基π电子间的相互作用引起的。普遍认为碱基堆集力是稳定DNA结构的最重要的因素。再有,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。 多样性 DNA分子由于碱基对的数量不同,碱基对的排列顺序千变万化,因而构成了DNA分子的多样性。例如,一个具有4000个碱基对的DNA分子所携带的遗传信息是4^4000种。 特异性 不同的DNA分子由于碱基对的排列顺序存在着差异,因此,每一个DNA分子的碱基对都有其特定的排列顺序,这种特定的排列顺序包含着特定的遗传信息,从而使DNA分子具有特异性。
2023-07-04 22:59:321

dna分子结构的两条链的特点

(1)DNA分子一般由2两条脱氧核苷酸链组成;两条链按反向、平行的方式螺旋成规则的双螺旋结构. (2)DNA分子的基本骨架是由脱氧核糖和磷酸交替连接形成. (3)两条链上的碱基通过氢键连接形成碱基对,且碱基之间的配对遵循A与T配对、G与C配对的碱基互补配对原则. 故答案为: (1)2 脱氧核苷酸 反向 双螺旋 (2)脱氧核糖 磷酸 基本骨架 (3)氢键 T(胸腺嘧啶) C(胞嘧啶) 碱基互补配对原则
2023-07-04 22:59:391

关于DNA分子结构的叙述

DNA分子是由两条核苷酸链以互补配对原则所构成的双螺旋结构的分子化合物。单个核苷酸由一个5碳糖连接一个或多个磷酸基团和一个含氮碱基组成。单个核苷酸再以糖-磷酸-糖的共价键形式连接形成DNA单链。两条DNA单链以互补配对形式,5"端对应3"端形成DNA双螺旋结构。其中两条DNA链中对应的碱基A-T以双键形式连接,C-G以三键形式连接,糖-磷酸-糖形成的主链在螺旋外侧,配对碱基在螺旋内侧。螺宽为2nm。真核生物的DNA以高度有序的形式存在于细胞核内,在细胞周期的大部分时间里以松散的染色质形式出现,在细胞分裂期形成高度致密的染色体。核小体(nucleosome)是染色质的基本组成单位,由DNA和5种组蛋白共同构成。先由各两个分子的组蛋白H2A、H2B、H3和H4形成八聚体的核心组蛋白,之后进一步压缩成染色单体,在核内组装成染色体。
2023-07-04 22:59:482

简述DNA构成的特点和功能

DNA是由脱氧核苷酸碱基(腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶)间通过碱基互补配对,在氢键的作用下形成的双螺旋结构.在脱氧核苷酸内部,磷酸基和脱氧核糖是通过3,5磷酸二脂键连接的.DNA是反向(向右)双螺旋结构.构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成。DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的。DNA是遗传物质,它具有相对的稳定性;能够精确的自我复制,使亲代与子代间保持遗传的连续性;能够指导蛋白质合成,控制新陈代谢过程和性状发育;在特定条件下产生可遗传的变异。
2023-07-04 22:59:571

dna分子二级结构有哪些特点

1 为右手双螺旋,两条链以反平行方式排列;2 两条由磷酸和脱氧核糖形成的主链骨架位于螺旋外侧,碱基位于内侧;3 两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则); 4 碱基平面与螺旋纵轴接近垂直,糖环平面接近平行5 螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对6 螺旋结构中,围绕中心轴形成两个螺旋形的凹槽.(即有大小沟)
2023-07-04 23:00:064

DNA分子双链的结构特点

(1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。 (2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。 (3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。
2023-07-04 23:00:371

DNA分子的结构是什么结构 探究DNA的化学构成和结构特征?

二、DNA的结构特征DNA分子有一个双螺旋结构,由两条互补的单链DNA相互缠绕而成。这种结构被称为Watson-Crick结构,因为它是由James Watson和Francis Crick在1953年提出的。每个DNA分子的两条单链DNA相互缠绕成一个螺旋,形成了一个螺旋桥。螺旋桥的两侧是碱基对,它们通过氢键相互配对,形成了DNA的双螺旋结构。其中,A碱基和T碱基之间有两个氢键,C碱基和G碱基之间有三个氢键。DNA是生物体内最重要的一种核酸,它是遗传信息的携带者,决定了生物体的遗传特征。DNA分子的结构是由哪些结构组成的呢?下面我们来探究一下DNA的化学构成和结构特征。DNA分子有一个双螺旋结构,由两条互补的单链DNA相互缠绕而成。这种结构被称为Watson-Crick结构,因为它是由James Watson和Francis Crick在1953年提出的。每个DNA分子的两条单链DNA相互缠绕成一个螺旋,形成了一个螺旋桥。螺旋桥的两侧是碱基对,它们通过氢键相互配对,形成了DNA的双螺旋结构。其中,A碱基和T碱基之间有两个氢键,C碱基和G碱基之间有三个氢键。一、DNA的化学构成
2023-07-04 23:00:431

DNA 分子的结构特点

DNA分子结构的主要特点: ① DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。 ② DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧 ③ 两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A = T/
2023-07-04 23:00:511

dna分子的结构是(DNA双螺旋结构基本特点)

dna分子的结构是DNA分子属于双螺旋结构,由两条平行的链组成,两条链互相绕成螺旋状。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。DNA分子的结构DNA分子两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。DNA分子双螺旋结构的主要特点DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A一定与T配对;G一定与C配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。。DNA双螺旋结构基本特点dna规则双螺旋结构的主要特点如下:dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。DNA的构型DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段.DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸,通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序.每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖+一分子磷酸根.核酸的含氮碱基又可分为四类:腺嘌呤,胸腺嘧啶,胞嘧啶和鸟嘌呤.DNA的四种含氮碱基组成具有物种特异性.即四种含氮盐基的比例在同物种不同个体间是一致的,但在不同物种间则有差异.DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=T,C=G查哥夫法则.DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构.DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA.詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见.也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状.碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在.DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构.如H-DNA或R-环等三级结构.DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构.DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变.超螺旋式克服张力而形成的.当DNA双螺旋分子在溶液中以一定构象自由存在时,双螺旋处于能量最低状态此为松弛态.如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态.但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋.核酸以反式作用存在这可看作是核酸的四级水平的结构.DNA的拓扑结构也是DNA存在的一种形式.DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构.超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变.DNA的高级结构是原核生物的DNA高级结构为超螺旋结构。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。自然界中主要是负超螺旋。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。扩展资料:在双螺旋结构中,每旋转一圈含有10个碱基对处于能量最低的状态,少于10个就会形成右手超螺旋,反之为左手超螺旋。前者称为负超螺旋,后者称为正超螺旋。这是一种三级构造。原核细胞中的DNA超螺旋是在DNA旋转酶作用下,由ATP提供能量形成的环状DNA负超螺旋,真核细胞中的DNA与组蛋白形成的核小体以正超螺旋结构存在。DNA超螺旋有两种存在形式:具绞旋线超螺旋以及螺管式超螺旋。具绞旋线是发生在当DNA从细胞中独立出来后形成的超螺旋状态,而螺管式则是当DNA处于染色质中维持的超螺旋状态。其中以螺管式缠绕的更加紧密,且需要蛋白质的辅助方能形成——染色质中组蛋白。参考资料来源:百度百科-原核生物百度百科-超螺旋简述DNA的结构1、dna结构是双链结构,DNA即脱氧核糖核酸。脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。2、细胞核是真核细胞内最大、最重要的细胞结构,是细胞遗传与代谢的调控中心,是真核细胞区别于原核细胞最显著的标志之一。,它主要由核膜、染色质、核仁、核基质等组成。更多关于dna结构是什么,进入:查看更多内容
2023-07-04 23:01:001

DNA分子在组成和结构上有那些特点?为什么说它适于储存遗传信息?

组成:DNA是由脱氧核苷酸的单体聚合而成的聚合体。DNA的单体称为脱氧核苷酸,每一种脱氧核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根,DNA都是由C、H、O、N、P五种元素组成的。 结构:1,由两条反向平行的脱氧核苷酸长链盘旋而成。2,外侧由脱氧核糖和磷酸交替连接构成基本骨架,碱基排列在内侧。3,DNA分子两条链上的碱基通过氢键连接成碱基对。 为什么她适合储存遗传信息?1,碱基对排列顺序的千变万化,构成了DNA分子的多样性,从而能够储存了大量的遗传信息。2,每个DNA分子中的碱基对都有特定排列顺序,又构成了每一个DNA分子的特异性。3,DNA分子中的脱氧核糖和磷酸基团交替连接的方式不变,两条链之间碱基互补配对的方式不变,使DNA分子具有稳定性。 DNA分子的结构图网上很多,搜一下看看吧。
2023-07-04 23:01:141

DNA分子的双螺旋结构有哪些主要特点

1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。其结构特点主要有以下三点:(1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构.(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧.(3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则.
2023-07-04 23:01:231

DNA分子的双螺旋结构有哪些主要特点?

DNA双螺旋结构模型的特点。 1DNA是反向平行、右手螺旋的双链结构 2.碱基互补配,对DNA双链之间形成了互补的碱基对; 3.成对碱基大致处于同一平面4.双螺旋内,横向靠氢键、纵向靠碱基间平面间的堆积力维持稳定
2023-07-04 23:01:401

DNA分子的结构是什么

DNA分子属于双螺旋结构,由两条平行的链组成,两条链互相绕成螺旋状。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。 DNA分子的结构 DNA分子两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。 作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 DNA分子双螺旋结构的主要特点 (1) DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。 (2) DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。 (3)两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A(腺嘌呤)一定与T(胸腺嘧啶)配对;G(鸟嘌呤)一定与C(胞嘧啶)配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。(必修二49页)。
2023-07-04 23:02:011

DNA 分子的结构特点

DNA分子结构的主要特点:①DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构。②DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧③两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A=T/
2023-07-04 23:02:091

dna和rna分子的立体结构,它们各有哪些特点?稳定dna结构的力有哪些

DNA双螺旋结构模型特点:两条反平行的多核苷酸链形成右手双螺旋;糖和磷酸在外侧形成螺旋轨迹,碱基伸向内部,并且碱基平面与中心轴垂直,双螺旋结构上有大沟和小沟;双螺旋结构直径2nm,螺距3.4nm,每个螺旋包含10个碱基对;A和T配对,G和C配对,A、T之间形成两个氢键,G、C之间形成三个氢键。DNA三级结构为线状、环状和超螺旋结构。稳定DNA结构的作用力有:氢键,碱基堆积力,反离子作用。RNA中立体结构最清楚的是tRNA,tRNA的二级结构为三叶草型,tRNA的三级结构为倒“L”型。维持RNA立体结构的作用力主要是氢键。
2023-07-04 23:02:181

DNA分子结构知识点

DNA分子结构知识点   DNA分子结构知识容易与RNA的知识点混淆,因此我们应该要认真进行区分。下面是我推荐给大家的DNA分子结构知识点,希望能带给大家帮助。   DNA分子结构知识点   1.基本单位   DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。   2.分子结构   DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点:   ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。   ⑵5"端和3"端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5"端;另一端的的3号碳原子端称为3"端。   ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5"端与另一条链的"3"端相对,即一条链是3"~5",另一条为5"~~3"。   ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出:   ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等;   ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等;   ③A%+C%=T%+G%= A%+ G%= T%+ C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%;   ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C= T/ G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值;   ⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。   根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。   3.结构特点   ⑴稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。   ⑵多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。   ⑶特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。 ;
2023-07-04 23:02:241

比较DNA和RNA在化学做成,分子结构和生物功能上的特点

1楼已经比较全面了,我补充几点。DNA是刚性结构,长链,易折断。RNA是柔性结构,不易折断。DNA结构比较稳定,不易被降解。RNA结构不稳定,易降解。这也是为什么大多数生物选择DNA作为遗传物质的原因。
2023-07-04 23:02:392

简述dna的分子结构

你好,很高兴为你解答:1、DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。2、DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。3、两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶(C)配对。如一条链上某一碱基是C,另一条链上与它配对的碱基必定是G。碱基之间的这种一一对应的关系叫碱基互补配对原则。组成DNA分子的碱基虽然只有4种,它们的配对方式也只有A与T,C与G两种,但是,由于碱基可以任何顺序排列,构成了DNA分子的多样性。
2023-07-04 23:02:471

DNA和RNA分子的立体结构,它们各有哪些特点?

①、DNA为双链结构,RNA为单链结构;②、DNA为复杂的空间双螺旋结构,RNA分三类:mRNA(仅仅为单链,信使RNA)、rRNA(复杂结构,核糖体RNA,核糖体的组成成分)、tRNA(转运RNA,三叶草结构);③、构成上DNA不含有碱基U,含有碱基T;RNA不含有碱基T,含有碱基U。速记方法:学生物的就要做一个RNA,虽然不能像DNA那样成双成对(双链)而是一直单身(单链),至少能够一直拥有U(you)。
2023-07-04 23:03:081

DNA具有什么特性

名词:1、DNA的碱基互补配对原则:A与T配对,G与C配对。2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。5、人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。 语句:1、 DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基: ATGC。④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对, DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。3、DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目)③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。4、碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。5、DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期。②场所:主要在细胞核中。③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA复制都无法进行。④过程: a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则 合成与母链互补的子链。随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子。⑤特点:边解旋边复制,半保留复制。⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子。⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性.。
2023-07-04 23:03:291

dna分子是什么结构?

01 双螺旋 DNA分子是双螺旋结构。其基本组成单位是脱氧核糖核苷酸( deoxy-nucleotide),每个单核苷酸又由3种比较简单的化合物即磷酸、脱氧核糖和碱基各一分子组成。 DNA即脱氧核糖核酸(英文Deoxyribonucleic acid的缩写),是染色体主要组成成分,同时也是主要遗传物质,被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一半复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色单体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应,除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA。 DNA是一种双螺旋结构的生物大分子,其基本组成单位是脱氧核糖核苷酸( deoxy-nucleotide),每个单核苷酸又由3种比较简单的化合物即磷酸、脱氧核糖和碱基各一分子组成。碱基有嘌呤和嘧啶两大类,嘌呤中主要有腺嘌呤(A)和鸟嘌呤(G),嘧啶中主要有胞嘧啶(C)和胸腺嘧啶(T),这些嘌呤和嘧啶均为含氮的杂环化合物,称为含氮碱基。 DNA分子的双螺旋结构是相对稳定的。这是因为在DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。另外,碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。各个碱基对之间的这种纵向的相互作用力叫做碱基堆集力,它是芳香族碱基u03c0电子间的相互作用引起的。普遍认为碱基堆集力是稳定DNA结构的最重要的因素。再有,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。
2023-07-04 23:03:351

比较蛋白质与DNA在分子组成,一级结构及功能特点

蛋白质以及结构是氨基酸排列顺序,二级结构是阿尔法螺旋贝塔折叠等结构,三级结构是一个可以生成生物活性的最低单位,四级结构是几个三级结构之和。是一个高级的空间结构。蛋白质一级结构是氨基酸序列,功能是为了体现蛋白质生物学功能更好的解决二三级结构和高级结构所必须。特点是以肽键相互连接。DNA以及结构是碱基序列,而且是双链。功能是遗传信息载体。为了表达蛋白质而利用密码子的形式组合在一起。A-T,G-C相互连接。
2023-07-04 23:03:551

dna分子的结构是什么结构?

DNA的一级结构,就是指4种脱氧核苷酸的链接及排列顺序;DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构;DNA三级结构是DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋。DNA的一级结构,就是指4种脱氧核苷酸的链接及排列顺序,表示了该DNA分子的化学构成。核苷酸相互连接形成长的多核苷酸链。两个核苷酸之间的连接通常是通过磷酸二酯键,该键将一个核苷酸的磷酸基团与另一个核苷酸的脱氧核糖连接。由四种脱氧核苷酸通过磷酸二酯键连接而成的长链高分子多聚体为DNA分子的一级结构。DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.Onm;两条多核苷酸链是反向平行的,一条5"-3方向,另一条3"-5"方向;两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧;相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4nm。DNA三级结构是DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋。环状分子的额外螺旋可以形成超螺旋。超螺旋可以是右手螺旋(正超螺旋),也可以是左手螺旋(负超螺旋)。对于环状分子而言,有其拓扑学上特定规律:L=T+W。扩展资料:dna分子功能:1、DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;2、编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;3、初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。
2023-07-04 23:04:021

dna分子的结构是什么结构的双螺旋

DNA分子由两条平行的链组成,两条链互相绕成螺旋状,称为双螺旋。每条链都由称为脱氧核糖的糖分子与磷酸在交替连接而成。 脱氧核糖核酸(DNA)结构 两条单链以双螺旋结构结成。单链是指由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链。 作用是:原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。 DNA分子结构的特点: (1)DNA分子是由两条链组成的,并按反向平行 方式盘旋成双螺旋结构。 (2)DNA分子中的脱氧核糖和磷酸交 替连接,排列在外侧,构成基本骨架; 碱基排列内侧。 (3)两条链上的碱基通过氢键连接成碱 基对,即:A和T配对,G和C配对。(碱基互补配对原则)
2023-07-04 23:04:191

高中生物DNA结构特点(三个性简单概括加意义)?〈急!书上都没有!〉

DNA结构特点:稳定性、多样性、特异性。稳定性:DNA规则的双螺旋结构使其结构相对稳定,一般不易改变。多样性:构成DNA的碱基尽管只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 23:04:423

DNA分子的结构?

脱氧核糖核酸(DNA,为英文Deoxyribonucleicacid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。事实上,原核细胞(无细胞核)的DNA存在于细胞质中,而真核生物的DNA存在于细胞核中,DNA片断并不像人们通常想像的那样,是单链的分子。严格的说,DNA是由两条单链像葡萄藤那样相互盘绕成双螺旋形,根据螺旋的不同分为A型DNA,B型DNA和Z型DNA,詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。这种核酸高聚物是由核苷酸链接成的序列,每一个核苷酸都由一分子脱氧核糖,一分子磷酸以及一分子碱基组成。DNA有四种不同的核苷酸结构,它们是腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢键结合在一起。由于氢键键数的限制,DNA的碱基排列配对方式只能是A对T或C对G。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA复制时也是采用这种互补配对的原则进行的:当DNA双螺旋被展开时,每一条链都用作一个模板,通过互补的原则补齐另外的一条链。分子链的开头部分称为3"端而结尾部分称为5"端,这些数字表示脱氧核糖中的碳原子编号。
2023-07-04 23:04:491

DNA 分子的结构特点

DNA分子结构的主要特点:① DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构.② DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧 ③ 两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A = T/
2023-07-04 23:04:571

dna分子的结构是什么结构?

DNA是双螺旋结构,4种核苷酸的连接及其排列顺序表示了该DNA分子的化学构成。DNA不仅具有严格的化学组成,还具有特殊的高级结构,它的分子结合是双螺旋的形式。DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的;DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶(C)配对。如一条链上某一碱基是C,另一条链上与它配对的碱基必定是G。碱基之间的这种一一对应的关系叫碱基互补配对原则。组成DNA分子的碱基虽然只有4种,它们的配对方式也只有A与T,C与G两种,但是,由于碱基可以任何顺序排列,构成了DNA分子的多样性。扩展资料:在繁殖过程中,父代把它们自己DNA的一半复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色单体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA。
2023-07-04 23:05:051

dna分子的结构式

螺旋结构。所谓DNA的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。核苷酸序列对DNA高级结构的形成有很大影响,如B-DNA中多聚(G-C)区易出现左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发卡式结构等。DNA不仅具有严格的化学组成,还具有特殊的高级结构,它主要以有规则的双螺旋形式存在,其基本特点是:1、DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。2、DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。
2023-07-04 23:05:191

DNA分子的结构具有稳定性的原因是什么

主要是以下两个力:维持DNA双螺旋结构纵向稳定性的碱基堆积力;和维持DNA双螺旋结构横向稳定性的氢键。
2023-07-04 23:05:362

DNA 分子的结构特点

1.有两条链组成,它们按反向平行方式盘旋成双螺旋 结构.2.脱氧核糖与磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧.3.两条链上的碱基通过氢键连接成碱基对,碱基配对有一定规律:A-T C-G(遵循碱基互补配对原则)
2023-07-04 23:05:572

DNA 分子的结构特点

特点:1.dna分子为螺旋结构;2.2条脱氧核苷酸连盘旋而成;3.外侧磷酸和脱氧核糖交替连接构成支架;4.内侧按碱基互补配对原则排列。
2023-07-04 23:06:052

dna分子结构特点 dna分子有什么特点

1、稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。 2、多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。 3、特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 23:06:121

DNA 分子的结构特点

特点:1.dna分子为螺旋结构;2.2条脱氧核苷酸连盘旋而成;3.外侧磷酸和脱氧核糖交替连接构成支架;4.内侧按碱基互补配对原则排列。
2023-07-04 23:06:202

dna分子结构特点 dna分子有什么特点

1、稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。 2、多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。 3、特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 23:06:271

DNA和蛋白质的分子结构各有什么特点?

构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成。DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。二级结构:多肽链的某些部分氨基酸残基周期性的空间排列。三级结构:在二级结构基础上进一步折叠成紧密的三维形式。四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列。
2023-07-04 23:06:341

DNA分子的结构特点 [DNA分子的结构及其特点]

1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5"端和3"端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5"端;另一端的的3号碳原子端称为3"端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5"端与另一条链的3"端相对,即一条链是3"~5",另一条为5"~~3"。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等; ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等; ③A%+C%=T%+G%=A%+G%=T%+C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%; ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C=T/G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值; ⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。 根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。 3.结构特点 ⑴稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。 ⑵多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。 ⑶特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 23:06:401

dna分子二级结构有哪些特点

结构特点:1、为右手双螺旋,两条链以反平行方式排列。2、两条由磷酸和脱氧核糖形成的主链骨架位于螺旋外侧,碱基位于内侧。3、两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则)。4、碱基平面与螺旋纵轴接近垂直,糖环平面接近平行。5、螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对。DNA二级结构的稳定作用力:1、两条多核苷酸链间的互补碱基对之间的氢键。2、碱基对疏水的芳香环堆积所产生的疏水作用力,以及堆积的碱基对间的范德华力。3、磷酸集团上的负电荷与介质中的阳离子化合物之间形成的盐键。扩展资料:DNA双螺旋的碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二酯键相连,形成核酸的骨架。碱基平面与假想的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。DNA的脆弱性意味着电子能量能够摧毁这种单链,因此这种螺旋结构只能够通过DNA“绳索”进行观察,这些细小的遗传物质绳索是由几条缠绕的绳索组成的。电子束能够辨认出这种DNA绳索。根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA。第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。参考资料来源:百度百科——DNA二级结构参考资料来源:百度百科——DNA双螺旋
2023-07-04 23:06:471

DNA分子的双螺旋结构有哪些主要特点?

(1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。 (2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。 (3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。
2023-07-04 23:07:001

DNA和蛋白质的分子结构各有什么特点?

构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成。DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。二级结构:多肽链的某些部分氨基酸残基周期性的空间排列。三级结构:在二级结构基础上进一步折叠成紧密的三维形式。四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列。
2023-07-04 23:07:071

dna的分子结构是什么

dna的分子结构是以4种脱氧核苷酸为单位连接而成的长链,这4种脱氧核苷酸分别含有A,T,C,G四种碱基。dna是生物细胞内含有的四种生物大分子之一核酸的一种。 dna携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。 dna由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。 dna分子结构中,两条多脱氧核苷酸链围绕一个共同的中心轴盘绕,构成双螺旋结构。脱氧核糖-磷酸链在螺旋结构的外面,碱基朝向里面。两条多脱氧核苷酸链反向互补,通过碱基间的氢键形成的碱基配对相连,形成相当稳定的组合。
2023-07-04 23:07:351

dna分子中稳定的化学键

DNA分子的稳定性主要由三种化学键维持:互补碱基之间的氢键、碱基之间的碱基堆集力、磷酸残基上的负电荷可与介质中的阳离子之间形成离子键,此外DNA分子的双螺旋结构就是其稳定性原因之一。DNA分子基本单位:DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。DNA分子结构特点:1、稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。2、多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。3、特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 23:07:421

DNA和RNA的分子组成,分子结构的异同点

DNA 的分子组成为脱氧核糖核苷酸RNA 的分子组成为核糖核苷酸分子结构不同点 DNA为双链结构RNA为单链DNA 的碱基组成为A T G CRNA 的分子组成为A U G C相同点 成练的链接方式即上一个核苷酸的 5撇端到下一个 核苷酸的3撇端
2023-07-04 23:07:501

dna的基本结构特点

 DNA是一种长链聚合物,组成单位称为脱氧核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架.每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据.读取密码的过程称为转录,是以DNA双链中的一条为模板复制出一段称为RNA的核酸分子.多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA.   在细胞内,DNA能组织成染色体结构,整组染色体则统称为基因组.染色体在细胞分裂之前会先行复制,此过程称为DNA复制.对真核生物,如动物、植物及真菌而言,染色体是存放于细胞核内;对于原核生物而言,如细菌,则是存放在细胞质中的类核里.染色体上的染色质蛋白,如组织蛋白,能够将DNA组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录.  DNA的结构目前一般划分为一级结构、二级结构、三级结构、四级结构四个阶段.   1. DNA的一级结构是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3",5"-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序.   每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根.核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G).DNA的四种含氮碱基组成具有物种特异性.即四种含氮盐基的比例在同物种不同个体间是一致的,但再不同物种间则有差异. DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中 A=T C=G 查哥夫(Chargaff)法则.   2. DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构.DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA.詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图).也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.   3. DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构.如H-DNA或R-环等三级结构.   4. 核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构.   5. 此外,DNA的拓扑结构也是DNA存在的一种形式.DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构.超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变. DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度.DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平.温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开. DNA是由许多脱氧核苷酸残基按一定顺序彼此用3",5"-磷酸二酯键相连构成的长链.大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基.在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%.在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶.40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和.一般用几个层次描绘DNA的结构.   一级结构 DNA的一级结构即是其碱基序列.基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中.1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖.自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立.如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等.现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来.   二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程.经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类.   一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近.Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名.这种构型适合多核苷酸链的嘌呤嘧啶交替区.1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA 双螺旋DNA︰1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了DNA中4种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等.这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的概念.   1953年2月,沃森、克里克通过维尔金斯看到了富兰克林在1951年11月拍摄的一张十分漂亮的DNA晶体X射线衍射照片,这一下激发了他们的灵感.他们不仅确认了DNA一定是螺旋结构,而且分析得出了螺旋参数.他们采用了富兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应.   一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型.1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了.   双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了.因此,只需以其中的一条链为模版,即可合成复制出另一条链.   克里克从一开始就坚持要求在4月25日发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话.他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”.   在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制.   【分布和功能】   原核细胞的染色体是一个长DNA分子.真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子.不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起.DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中.DNA病毒的遗传物质也是DNA.
2023-07-04 23:08:001

其DNA分子具有什么结构特点

DNA分子结构的主要特点:① DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构 ② DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架 ③ 两条链上的碱基通过氢键连接成碱基对
2023-07-04 23:08:081

高三生物知识点必修二:DNA分子结构

  1.基本单位   DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。   2.分子结构   DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点:   ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。   ⑵5"端和3"端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5"端;另一端的的3号碳原子端称为3"端。   ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5"端与另一条链的3"端相对,即一条链是3"~5",另一条为5"~~3"。   ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出:   ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等;   ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等;   ③A%+C%=T%+G%=A%+G%=T%+C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%;   ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C=T/G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值;   ⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。   根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。   3.结构特点   ⑴稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。   ⑵多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。   ⑶特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。
2023-07-04 23:08:161