汉邦问答 / 问答 / 问答详情

有颜色的pcr产物对毛细管电泳有影响吗

2023-06-28 09:41:02
FinCloud

这是我在网上找来的,自己感觉说的挺全的,你看看。不过我要说一句,目前DNA测序所依靠的还是Sanger的原理,只是结合了荧光染料,提高了灵敏度。DNA测序原理和方法DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PEABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABIPRISM310型DNA测序仪的测序原理和操作规程。【原理】ABIPRISM310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3""""末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupleddevice)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP6)和GeneScan胶(POP4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】1.BigDye测序反应试剂盒主要试剂是BigDyeMix,内含PE专利四色荧光标记的ddNTP和普通dNTP,AmpliTaqDNApolymeraseFS,反应缓冲液等。2.pGEM-3Zf(+)双链DNA对照模板0.2g/L,试剂盒配套试剂。3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。6.灭菌去离子水或三蒸水。7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。8.3mol/L醋酸钠(pH5.2)称取40.8gNaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。9.70%乙醇和无水乙醇。10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml3mol/LNaAc混匀,室温可保存1年。11.POP6测序胶ABI产品。12.模板抑制试剂(TSR)ABI产品。13.10×电泳缓冲液ABI产品。14.ABIPRISM310型全自动DNA测序仪。15.2400型或9600型PCR仪。16.台式冷冻高速离心机。17.台式高速离心机或袖珍离心机。【操作步骤】1.PCR测序反应(1)取0.2ml的PCR管,用记号笔编号,将管插在颗粒冰中,按下表加试剂:所加试剂测定模板管标准对照管BigDyeMix1μl1μl待测的质粒DNA1μl-pGEM-3Zf(+)双链DNA-1μl待测DNA的正向引物1μl-M13(-21)引物-1μl灭菌去离子水2μl2μl总反应体积5μl,不加轻矿物油或石蜡油,盖紧PCR管,用手指弹管混匀,稍离心。(2)将PCR管置于9600或2400型PCR仪上进行扩增。98℃变性2min后进行PCR循环,PCR循环参数为96℃10s,50℃5s,60℃4min,25个循环,扩增结束后设置4℃保温。2.醋酸钠/乙醇法纯化PCR产物(1)将混合物离心,将扩增产物转移到1.5mlEP管中。(2)加入25μl醋酸钠/乙醇混合液,充分振荡,置冰上10min以沉淀DNA。12000r/min于4℃离心30min,小心弃上清。(3)加70%(V/V)的乙醇50μl洗涤沉淀2次。12000r/min于4℃离心5min,小心弃上清和管壁的液珠,真空干燥沉淀10~15min。3.电泳前测序PCR产物的处理。(1)加入12μl的TSR于离心管中,剧烈振荡,让其充分溶解DNA沉淀,稍离心。(2)将溶液转移至盖体分离的0.2mlPCR管中,稍离心。(3)在PCR仪上进行热变性(95℃2min),冰中骤冷,待上机。4.上机操作按仪器操作说明书安装毛细管,进行毛细管位置的校正,人工手动灌胶和建立运行的测序顺序文件。仪器将自动灌胶至毛细管,1.2kV预电泳5min,按编程次序自动进样,再预电泳(1.2kV,20min),在7.5kV下电泳2h。电泳结束后仪器会自动清洗,灌胶,进下一样品,预电泳和电泳。每一个样品电泳总时间为2.5h。电泳结束后仪器会自动分析或打印出彩色测序图谱。5.仪器将自动进行序列分析,并可根据用户要求进行序列比较。如测序序列已知,可通过序列比较以星号标出差异碱基处,提高工作效率。6.测序完毕按仪器操作规程进行仪器清洗与保养。【计算】测序反应精确度计算公式:100%-差异碱基数(不包括N数)/650×100%差异碱基即测定的DNA序列与已知标准DNA序列比较不同的碱基,N为仪器不能辨读的碱基。【注意事项与评价】1.ABIPRISM310基因分析仪是高档精密仪器,需专人操作、管理和维护。2.本实验测序PCR反应的总体积是5μl,而且未加矿物油覆盖,所以PCR管盖的密封性很重要,除加完试剂后盖紧PCR管盖外,最好选用PE公司的PCR管。如PCR结束后PCR液小于4~4.5μl,则此PCR反应可能失败,不必进行纯化和上样。3.作为测序用户来说,只需提供纯化好的DNA样品和引物,一个测序PCR反应使用的模板不同,需要的DNA量也就不同,PCR测序所需模板的量较少,一般PCR产物需30~90ng,单链DNA需50~100ng,双链DNA需200~500ng,DNA的纯度一般是A260nm/A280nm为1.6~2.0,最好用去离子水或三蒸水溶解DNA,不用TE缓冲液溶解。引物用去离子水或三蒸水配成3.2pmol/μl较好。4.本实验使用的测序试剂盒是BigDye荧光标记终止底物循环测序试剂盒,一般可测DNA长度为650bp左右。本仪器DNA测序精确度为(98.5±0.5)%,仪器不能辨读的碱基N<2%,所需测定的长度超过了650bp,则需设计另外的引物。为保证测序更为准确,可设计反向引物对同一模板进行测序,相互印证。对于N碱基可进行人工核对,有时可以辨读出来。为提高测序的精确度,根据星号提示位置,可人工分析该处彩色图谱,对该处碱基作进一步核对。

M13通用引物的设计是针对M13噬菌体的那一段基因?即质粒中有M13的那一段可以用M13通用引物进行测序?

多克隆位点插进去的都可以用通用引物测。。
2023-06-27 17:20:242

连接转化成功后,用m13的引物做pcr,跑出好几条带是怎么回事

这种现象我也出现过,我分析的可能是因为M13引物自身的特性,如果P长片段,很可能会非特异的与质粒基因组DNA结合或者与质粒结合而产生长度在2000bp左右的条带,会很难验证克隆是否成功。所以,建议用目的片段的特异引物进行PCR反应,或者直接送测序。
2023-06-27 17:20:341

求助通用引物验证阳性克隆

做PCR都要考虑Tm值吧。M13引物一般是M13F,M13R;M13F(-47),M13R(-48)配对使用。如果做菌落PCR验证阳性克隆的话,如果只是把目的片段插入到多克隆位点处,这两对引物哪一对都可以的。如果是样品需要测序的话,由于接近引物的读出效果不好,如果克隆的位点接近CMS的两端,一般需要用M13F(-47),M13R(-48)来测序。
2023-06-27 17:20:431

用m13引物pcr扩增克隆载体,产生多个条带,能够测序吗

能否详细描述一下两条带的位置,另外你以什么作为template?cDNA?因为一般情况下引物二聚体的条带都是或多或少的存在的。如果是目的条带有两条,那么可能是引物出现了错配,也有可能是本身就有两种可能。回收测序即可。追问:两条带距离很近,一条很亮一条很暗,用的DNA基因组回答:基因组DNA的话有杂带几乎不可避免,因为错配可能很大,挺正常的。如果两条带距离很近、又基本符合你目的片段的大小的话,可以继续跑胶让它们分开一些,然后切胶回收,连接T载体,转化涂板,挑菌测序。挑对的就行了。
2023-06-27 17:20:531

用m13引物pcr扩增克隆载体,产生多个条带,能够测序吗

能否详细描述一下两条带的位置,另外你以什么作为template?cDNA? 因为一般情况下引物二聚体的条带都是或多或少的存在的。 如果是目的条带有两条,那么可能是引物出现了错配,也有可能是本身就有两种可能。回收测序即可。 追问: 两条带距离很近,一条很亮一条很暗,用的DNA基因组 回答: 基因组DNA的话有杂带几乎不可避免,因为错配可能很大,挺正常的。 如果两条带距离很近、又基本符合你目的片段的大小的话,可以继续跑胶让它们分开一些,然后切胶回收,连接T载体,转化涂板,挑菌测序。挑对的就行了。
2023-06-27 17:21:021

用m13通用引物扩增blunt载体得到多条pcr产物,怎么办

能否详细描述一下两条带的位置,另外你以什么作为template?cDNA? 因为一般情况下引物二聚体的条带都是或多或少的存在的。 如果是目的条带有两条,那么可能是引物出现了错配,也有可能是本身就有两种可能。回收测序即可。 两条带距离很近,一条很亮一条很暗,用的DNA基因组 回答: 基因组DNA的话有杂带几乎不可避免,因为错配可能很大,挺正常的。 如果两条带距离很近、又基本符合你目的片段的大小的话,可以继续跑胶让它们分开一些,然后切胶回收,连接T载体,转化涂板,挑菌测序。挑对的就行了。
2023-06-27 17:21:121

哪些载体可以使用M13通用引物测序? 必须是M13噬菌体载体吗?

不是,根据你的质粒载体序列,如果你的质粒载体序列里面有M13序列就可以用,可以用的比如生工的PUCm-T载体.
2023-06-27 17:21:211

我PCR产物大小141bp,纯化后,连接到pGEM-T载体克隆,使用M13通用引物,扩增片段长度是多少?

比插入片段大一点点,大不了多少。
2023-06-27 17:21:322

T载上连接2000bp的目的片段,请问怎么测序,谢谢!!

请查你所用T载体的序列,如果找不到,可以尝试M13, Sp6等这些载体常用的引物进行测序。
2023-06-27 17:21:423

m13引物说明书

当然可以阿 M13通用引物测序跟哪来的片段没关系的 只要你把那个片段倒入M13噬菌体载体就ok
2023-06-27 17:21:501

做克隆后挑菌,用M13引物扩增菌液呈阳性,特异性引物扩增同一菌液则阴性,各位同行有遇到这种情况的吗?

呵呵,我以前也遇到过类似情况,至今不知道原因。可能是平板上连接产物残留污染。建议检测克隆的退火温度提高至60-62度,挑取菌体尽量不要沾上培养基尽量少。
2023-06-27 17:22:091

通用测序引物的问题,急!谢谢!

表示不同序列而已。你可以搜下它们各自的序列,比较一下
2023-06-27 17:22:193

dna复制需要rna引物的证据有哪些?

Pcr
2023-06-27 17:22:292

pGEM easy-T载体上用的M13引物序列是什么?

去下面这个网站看看!http://www.takara.com.cn/?action=Page&Plat=pdetail&newsid=371&subclass=1
2023-06-27 17:22:392

什么叫通用引物?都有哪些,如何选择?谢谢!

通用引物是一般和载体多克隆位点两旁的序列匹配,或者是与载体里面的一些启动、终止元件匹配。这样不管载体插入什么DNA片段,都可以用通用引物扩出来。通用引物可以用来测序,但是只是“通用”,也不是万能的.上海生工可以免费提供的引物:M13+(即M13(-47)), M13-(即M13(-48)), M13(-20),M13(-26),T7promoter, T7 terminator, SP6, T3, BGH, pGEX5"/3", 5"/3"AOX, α-factor, -96gIII, pBV220+/-, PT5, pEGFP-N5"/3", pEGFP-C5",3", pCMV5-F/R, pQE30+/-, 5"/3"AD, pGL3+/-,Pact2F/R,1492R,27F,CMV,U6promoter,S-Tag
2023-06-27 17:22:491

pgm-t载体克隆片段pgm-t载体,可以用M13通用引物测序吗

的确可以
2023-06-27 17:22:593

什么叫通用引物,都有哪些?

通用引物:一般是指某基因外围保守序列。虽然这个基因可能是序列多变的,(如同功酶),但两侧翼序列则是保守的。利用俩侧翼保守序列设计出来的引物,称为通用引物。有M13、T7、T3、Sp6
2023-06-27 17:23:081

PCR引物和测序引物有什么区别

一、定义不同:PCR是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。测序引物分自带引物和通用引物,自带引物为客户自行设计的PCR扩增引物或者载体及目的片段上设计的引物进行测序。二、作用不同:通用引物一般在购买载体时公司提供,一般测序引物如T7、SP6、M13等测序公司免费使用。不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方。PCR又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。三、适用不同:PCR引物又称为寡核苷酸引物,也就是RNA,是由人工合成的,分为两种,引物1和引物2。由于DNA聚合酶只能从核苷酸链的5"端到3"端进行复制,也就是只能识别3"的尾端。测序必须为特异性引物,不能为随机、兼并、不纯、带荧光标记、长度过长引物.测序引物长度一般要求在18-25BP,最长不超过30BP..PCR引物要求相对低一些.简单说来就是PCR引物可以用来扩增但是不一定适合测序。扩展资料:PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。引物序列在模板内应当没有相似性较高,尤其是3"端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因为这样会使引物在GC富集序列区错误引发。参考资料来源:百度百科-引物
2023-06-27 17:23:171

TA克隆正反向测序结果都找不到扩增目的条带的引物(载体通用引物也找不到)

不知道测序公司给你的结果显示是无信号还是什么 如果是无信号的话你拿到的序列是测序仪随机产生的序列 你在网上比对序列是没有意义的不知道你做了酶切鉴定了没有 有的时候光是菌液PCR鉴定是不够的 我八成分析你这个是空载了友情提示一下 有的时候你测序会发现有一段自己的序列然后直接就是载体序列了也是有可能的 当插入序列PCR过程中产生环装序列有的时候是测序不到的 希望对你有帮助
2023-06-27 17:23:372

怎么利用选择培养基鉴别是质粒质粒

1. 将质粒转入DH5α的感受态态细菌中,涂布于含有氨苄抗性的固体培养板上,过夜培养。2. 挑选单克隆,转接3-5ml含氨苄抗性的液体培养基,37度振荡培养10-12h。3. 提取质粒(步骤省略),并将质粒进行进行琼脂糖凝胶电泳,一般可以观察到2-3条带,选择其中最下面一条带(超螺旋形式)大小约为2000左右的克隆。4. 以上述挑选的克隆质粒为模版,以M13为引物,进行PCR检测(步骤省略,退火温度为55度),注意设置阴性和阳性对照。5. PCR产物,进行琼脂糖凝胶电泳,注意选择合适的DNA分子量Marker,比如DL2000。6. 扩展产物为750bp左右条带的即为正确的克隆。
2023-06-27 17:23:482

dna复制需要rna引物的证据有哪些

首先,所有研究过的DNA聚合酶都只有链延伸活性,而没有起始链合成的功能uff61相反,RNA聚合酶却具有起始链合成和链延伸的活性uff61另外,一系列实验提供了有关的证据:例如在体外试验中,噬菌体M13单链环状DNA在加入一段RNA引物之后,DNA聚合酶才能把单链环状DNA变成双链环状DNA;同时发现如果加入RNA聚合酶抑制剂利福平,也可以抑制M13DNA的复制,如果加入RNA引物再加利福平,DNA的合成不被抑制;还发现新合成的DNA片段5"端共价连接着RNA片段,如多瘤病毒在体外系统合成的冈岐片段5"端有长约10个残基的以5"-三磷酸结尾的RNA引物uff61
2023-06-27 17:24:091

求测序引物的完整定义

测序引物和普通引物没区别,用做PCR的引物做测序反应。 我们一般测序时都是直接把我做PCR的引物给他做单项还是双向测序。所不同的只不过是他加入的是ddNTP、dNTP和测序的酶不同而已
2023-06-27 17:24:224

PCR产物为什么会出现100~200bp的条带

也碰到了这种情况,搞得很是纠结你后来是怎么解决的?分享一下,谢谢
2023-06-27 17:24:325

影响PCR反应效率的因素有哪些?如何有效地提高PCR反应的效率?

影响 PCR 的主要因素 PCR技术必须有人工合成的合理引物和提取的样品DNA,然后才进行自动热循环,最后进行产物鉴定与分析。引物设计与合成目前只能在少数技术力量较强的研究院、所进行,临床应用只需购买PCR检测试剂盒就可开展工作,PCR自动热循环中影响因素很多,对不同的DNA样品,PCR反应中各种成份加入量和温度循环参数均不一致。现将几种主要影响因素介绍如下。 一、 温度循环参数 在PCR自动热循环中,最关键的因素是变性与退火的温度。如操作范例所示,其变性、退火、延伸的条件是:94℃60s, 37℃60s, 72℃120s,共25~30个循环,扩增片段500bp。在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算。在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测。 关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的。下面就各种温度的选择作一介绍。 1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动。变性温度低则变性不完全,DNA双链会很快复性,因而减少产量。一般取90~95℃。样品一旦到达此温度宜迅速冷却到退火温度。DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持Taq DNA聚合酶的活力,加入Taq DNA聚合酶后最高变性温度不宜超过95℃。 2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G+C)%含量进行推测,把握试验的起始点,一般试验中退火温度Ta(annealing temperature)比扩增引物的融解温度TTm(melting temperature)低5℃,可按公式进行计算: Ta = Tm - 5℃= 4(G+C)+ 2(A+T) -5℃ 其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G+C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要。 3.引物延伸温度温度的选择取决于Taq DNA聚合酶的最适温度。一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒。每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质。扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因Taq DNA聚合酶在退火温度下足以完成短序列的合成。对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的。此时,引物延伸温度与退火温度相同。对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使Taq DNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段。 4.循环次数常规PCR一般为25~40个周期。一般的错误是循环次数过多,非特异性背景严重,复杂度增加。当然循环反应的次数太少,则产率偏低。所以,在保证产物得率前提下,应尽量减少循环次数。 扩增结束后,样品冷却并置4℃保存。 二、引物引物设计 要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5"端决定扩增产物的两个5"末端位置。由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要。 引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括: 1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次。因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸。这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体。有时可在5"端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5"端生物素标记或荧光标记可用于微生物检测等各种目的。 有时引物不起作用,理由不明,可移动位置来解决。 2.(G+C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体。两个引物中(G+C)%含量应尽量相似,在已知扩增片段(G+C)%含量时宜接近于待扩增片段,一般以40%~60%为佳。 3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpin structures)。 4.引物之间两个引物之间不应发生互补,特别是在引物3"端,即使无法避免,其3"端互补碱基也不应大于2个碱基,否则易生成“引物二聚体”或“引物二倍体”(Primer dimer)。所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物。 另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列。否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加。 5.引物3"端配对DNA聚合酶是在引物3"端添加单核苷酸,所以,引物3"端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增。 引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定。 人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质。纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年。 三、 DNA 聚合酶 早在1956年Kornberg等就从大肠杆菌提取液中发现了DNA聚合酶,并且得到了DNA聚合酶Ⅰ纯品。DNA聚合酶Ⅰ是由分子量为109000的一条多肽链构成,此酶可被枯草杆菌蛋白酶分解为两个片段,一个片段分子量为76000,有聚合酶活性,并有3"→5外切酶活力,即Klenow片段(Klenow fragment)。另一个片段分子量为34000,具有5"→"3"外切酶活力。因此,DNA聚合酶具有几种功能:一是聚合作用,以DNA为模板,将dNTP中的脱氧单核苷酸逐个加到3-OH末端。二是有"3"→5"外切酶活力,能识别和消除错配的引物末端,与复制过程中校正功能有关。三是5"→3"外切酶活力,它能从5"端水解核苷酸,还能经过几个核苷酸起作用,切除错配的核苷酸。1985年Mullis 等发明了PCR方法,以Klenow片段完成β-珠蛋白的PCR后,世界上许多实验室就考虑用耐热DNA聚合酶代替Klenow片段进行PCR,使耐热多聚酶的研究得以迅速发展。人们从生活于60℃(B.Stearothermophilus)到87℃(S.Solfatavicus)的许多菌中分离纯化出耐热DNA聚合酶,但有些酶不能耐受DNA变性所需温度,所以无法应用于PCR。现就PCR反应中常用的DNA聚合酶等作一详细介绍。 1.Taq DNA聚合酶用Taq DNA聚合酶代替大肠杆菌DNA聚合酶Ⅰ的Klenow片段是使PCR普及应用的关键。Klenow片段不能耐受95℃的双链DNA变性温度,所以每次循环都要加入新酶;而Taq DNA聚合酶可以耐受93~95℃的高温,避免了不断补加多聚酶的繁琐操作,同时使退火和延伸温度得以提高,减少了非特异性产物和DNA二级结构对PCR的干扰,增进了PCR特异性、产量和敏感度,二者相比,其主要区别在于:①Klenow酶的最适温度为37℃,扩增的产物并非全是目的序列,需用探针检测。Taq酶则不仅产率高而特异性也高。它的最适温度为74~75℃。因而使退火温度可以提高,使退火严格性提高,减少错配引物的延伸。②循环后期酶量渐感不足而产生平坡。到达平玻的循环次数,Klenow酶为20个(均用1μg基因组DNA开始)而Taq酶为30个。③延伸片段长度Taq酶为10kb以内,而Klenow酶为400bp以内。 Taq酶由水栖高温菌(Thermus aquatics)YT1蓖株中分离而得。此菌于1969年由Brock分离自美国黄石公园温泉,作为栖热杆菌的标准菌株,其生长温度为70~75℃。最初从中分离到分子量60~68KDa,比活性为2000~8000U/mg的DNA聚合酶。后来Cetus公司的Kary Mullis等又分离到比活为20万U/mg的纯酶,分子量为93910。此种9.4KDa酶的最适温度为75~80℃,与单纯核苷酸的结合率(Kcat)可达150核苷酸(nt)/s酶分子。以M13模板,用富含G+C的30bp引物延伸,70℃时Kact>60nt/s;55℃可达24nt/s;37℃时为1.5nt/s,而22℃时低至0.25nt/s。高于90℃时DNA合成活性甚差,这种高温条件下,引物与模板已不能牢固结合。 在PCR反应混合液中,Taq酶于92.5℃,95℃及97.5℃保持其50%活力的时间分别为130、40及5~6min,在50次循环的PCR中当管内最高温度为95℃。每循环为20s时尚可保持65%活力。Taq 酶在95℃的半寿期为40min,故在PCR循环中选用的变性温度,不宜高于95℃。 Taq酶现已可用基因重组的方法生产,商品名为Ampli Taq(Cetus公司)。Taq酶的完整基因长2499bp,在大肠杆菌中表达生产,含832个氨基酸。在氨基酸序列上与大肠杆菌DNA聚合酶Ⅰ有38%是一致的,包括对dNTP结合,引物与模板作用区均存在于Taq酶中。 Taq酶具有依赖DNA合成的5"→"3"外切酶活性,因此,模板上有一段退火的3"-磷酸化的“阻断物”,会被逐个切除而不会阻止来自上游引物链的延伸,而对于5"-32P标记的合成寡核苷酸引物,则无论是单链或是与模板复性,都未发现降解,所以该种活性不会影响PCR结果。Taq酶没有3"→"5"外切酶活性,如果发生dNTP错误掺入,这种酶没有校正能力,因此运用Taq酶进行PCR,产物中点突变较多,对克隆等不太有利。一般错掺率为1.25×10-4~1×10-5(4×dNTPs浓度分别为200μmol/L,Mg2+为1.5mmol/L,在55℃退火)。但不含3"→5"外切酶活性对测序有利。 2.影响酶活力的因素Taq酶的活力受Mg2+离子的影响。用鲱精DNA为模板,总dNTP浓度0.7~0.8mmol/L,Mg2+为2.0mmol/L时激活能力最高。浓度超过此值产生抑制。10mmol/l MgCl2抑制活力达40%~50%。dNTP能与Mg2+结合,故游离Mg2+只是结合后剩余的量。若总dNTP浓度高至4~6mmol/L时,Taq酶活力要降低20~30%,即底物抑制。 dNTP浓度低时PCR产率及特异性均增高,适合于用扩增掺入法标记生物素及放射性元素。当100μl PCR液中含dNTP各40μmol/L时就足以合成2.6μg的DNA(dNTP消耗一半)。 表1有机溶剂对Taq聚合酶活力的影响 物质 浓度 活力(%) 乙醇 <3% 100 10% 110 尿素 <0.5mol/L 100 1.0mol/L 118 1.5mol/L 107 DMSO <1% 100 10% 53 20% 11 二甲基甲酰胺 <5% 100 10% 82 20% 17 甲酰胺 <10% 100 15% 86 20% 39 SDS 0.001% 105 0.01% 10 0.1% <0.1% 用鲱精DNA,70℃,10min内dNTP的掺入量计算,标准条件为100%。 纯9.4KDa Taq酶不含3"→5"核酸外切酶活力。误掺入率取决于dNTP浓度。但Taq酶具有DNA依赖的链移位5"→3"核酸外切酶活力。对5"→3"32P标记寡核苷酸单链,或与MB模板杂交时均只有极少的降解力。 中等浓度KCl能刺激Taq酶合成活力达50%~60%,最佳KCl浓度为50mmol/L,浓度更高有抑制作用,>200mmol/L的KCl可使酶失活。 加入50mmol/L NH4Cl或NH4Ac或NaCl,可产生中度抑制或无作用。 低浓度尿素、DMSO、DMF或甲酰胺影响不大,吐温20/NP40可消除SDS(0.01%及0.1%)的抑制作用。 3.第二代耐热DNA聚合酶Stoffel片段:Cetus公司的Stoffel将Taq DNA聚合酶的5"→3"外切酶活性片段(N端289个氨基酸)去除,称为stoffel片段。其97.5℃的半衰期从Taq DNA聚合酶的5~6min提高到20min,同时该酶片段也对两个或更多模板位点的扩增反应即复合PCR(Multiplex PCR)更为有利。 VentTM DNA多聚酶:是美国New England Biolabs公司从潜水艇排气孔(Vent)中分离的超级嗜热菌-能生长于98℃中的Thermococcus litoralis中分离纯化得到的,故名Vent酶。它的一些酶学性质较Taq DNA聚合酶更为优越,它能耐100℃高温且2h以上仍有活力,并且具有3"→5"外切酶活性的校正能力,错误扩增的机率比Taq酶降低一倍。后来该公司又从深水潜艇(2010m)排气孔分离的能在104℃生长的Pyococcus菌GB-D株植入Deep Vent DNA聚合酶基因而表达的Deep Vent DNA聚合酶,在95℃的半寿期达23h(Vent酶为6.7h,Taq酶为1h)。 4.RTth逆转录酶(rTth Reverse Transcriptase)目前逆转录-PCR(RT-PCR)的发展很快,所以对耐热的依赖于RNA的DNA多聚酶的研究也有进展。有实验表明Taq DNA多聚酶有依赖于RNA的DNA聚合酶活性,但活性较弱。Cetus公司于1991年推出一种rTth Reverse Tran-scriptase,有很好的依赖于RNA的耐热DNA聚合酶活性和依赖于DNA的耐热DNA聚合酶活性,二种活性分别依赖于Mn2+Mg2+,这样就可分别控制酶活性。利用该酶只需250ng的总RNA即可有效地进行RT-PCR,得到特异的DNA片段,从而非常有利于逆转录PCR的发展。 耐热DNA聚合酶的研究近几年来得到长足的发展,这在PCR发展中起到了重要的作用。我们相信随着进一步的研究,将使人们对耐热DNA聚合酶的认识和应用更进一步地发展。 我国的PCR研究发展很快,其关键试剂-耐热DNA聚合酶-也已有几个实验室能够分离纯化,如复旦大学遗传学研究所、华美公司、中国医学科学院基础医学研究所。后二者的菌株为Thermus aquaticus YT-1。前者则是从自己筛选的嗜热菌中分离纯化,复旦大学遗传所亦已成功地克隆了该聚合酶的基因并获得了耐热F4DNA聚合酶,其酶学性质非常接近于Taq DNA聚合酶,为我国PCR的开展提供了保证。 四、影响 PCR 特异性的因素 通过上述内容。可以看出有许多因素可以影响PCR的特异性,在此我们作一归纳,供大家参考:①退火步骤的严格性:提高退火温度可以减少不匹配的杂交,从而提高特异性。②减短退火时间及延伸时间可以减少错误引发及错误延伸。③引物二聚体是最常见的副产品,降低引物及酶的浓度也可以减少错误引发,尤其是引物的二聚化。④改变MgCl2(有时KCl)浓度可以改进特异性,这可能是提高反应严格性或者对Taq酶的直接作用。⑤模板中如果存在次级结构,例如待扩增的片段易自行形成发夹结构时,可在PCR混合物中的4×dNTPs中加入7-脱氮-2"-脱氧鸟苷-5"-三磷酸(7-deaza-2"-deoxyguanosine-5"-trihosphate)(de7GTP)。用de7GTP与dGTP比例为3:1的混合物(150μmol/l de7GTP +50μmol/L dGTP)代替200μmol/l dGTP,则可阻非特异性产物的生成。 五、扩增平坡 扩增反应并不是可以无穷地进行下去的,经过一定的循环周期后需扩增的片段不再按指数增多而逐渐进入平坡;进入平坡的循环次数,取决于起始时存在的模板拷贝数以及合成的DNA总量。所谓平坡就是批PCR循环的后期,合成产物达0.3~1pmol时,由于产物的堆积,使原来以指数增加的速率变成平坦的曲线。 造成PCR进入平坡的原因有:引物和dNTP等消耗完毕、Taq酶失活,这几中因素在标准反应中均不会出现。此外,还有几种可能: 1.底物过剩 因DNA合成量多于反应液中存在的Taq酶,在100μl反应液中含2.5Utaq酶而DNA合成量达1μg(3nmol脱氧核苷酸)时,开始变为底物过剩。延长延伸时间或添加Taq酶,可以克服之。但不实用,因每进行下一循环就要延长延伸时间一倍及多加一倍Taq酶,才能继续保持指数增长。 2.非特异性扩增产物的竞争 与上述情况密切相关,此时不需要的DNA片段与需要的片段同时竞争聚合酶,要克服这一情况是要提高反应特异性,使不需要片段不能大量积聚。 3.退火时产物的单链自己缔合 两条单链的DNA片段在退火时除了与引物缔合外,也可以自行缔合,这也会阻止产品增多。当产物浓度到达10pmol/100μl时即可发生此现象,除稀释外无法克服。 4.变性在高浓度产物条件下,产物解链不完全,以及最终产物的阻化作用(焦磷酸化,双链DNA)。 总而言之,PCR的条件是随系统的而异的,并无统一的最佳条件,先选用通用的条件扩增,然后稍稍改变各参数,可以达到优化,以取得优良的特异性和产率。
2023-06-27 17:24:501

M13R和M13F序列?

M13 Forward (-40) 5"-GTTTTCCCAGTCACGACM13 Reverse 5"-CAGGAAACAGCTATGAC
2023-06-27 17:25:002

高通量基因测序是什么意思

高通量是相对于第一代测序的,第一代测序只能一次测1个样品的1段序列,产生的数据量相对来说很小,而高通量测序一次能够产生的数据量在几十G上百G,可以一次测很多的样本。在2000年的时候,3700、MegaBace等仪器上的测序也是高通量测序,是相对手工测序或者跑平板胶来说的。不过到2005年以后,高通量测序就改指第二代测序(Next generation sequencing),454、Solexa(后改为Illumina)和SOLiD等第二代测序,比3730等第一代测序的通量提高了成千上万倍,甚至上亿倍,所以称为高通量测序。扩展资料原理:测序方案建立在双脱氧测序法(Sanger等,1977)的基础上。为了从每一克隆插入片段两端成对地进行测序,每一个质粒模板DNA板应配备两个384孔循环测序反应板。测序反应采用Big Dye Terminator chemistry version 3.1(AppliedBiosystems)和标准M13或常用正向引物和反向引物。测序反应通过BiomekFX(Beckman)移液操作工作站建立。机械臂负责等分模板试样,起与反应液混合的作用,反应液含有双脱氧核苷酸、荧光标记的核苷酸、TaqDNA聚合酶、序列引物和缓冲液。模板和反应板有条形码,且在BiomekFX移液操作工作站上有条形码读取器跟踪,确保模板和反应液转移中没有错误。30~40线性扩增步骤连续循环在MJResearchTetrads或9700热循环仪(Ap—pliedBiosystems)中进行。参考资料来源:百度百科-基因组高通量测序
2023-06-27 17:25:101

测序引物不对还能测吗

测序引物不对不能测。测序引物不对会直接导致结果发生改变,建议更换引物测序或重新提供样品测序。即是一种依赖于特异DNA引物的序列测定方法。该法对模板的需要量较大,这就要求待测DNA片段尤其是拷贝数少的片段首先克隆到适合的载体中经过扩增后进行序列测定。常用的克隆载体如M13、PUC19、PBR322等均有商品公用测序引物。
2023-06-27 17:25:441

基于的ssr 遗传多样性分析

NOTE 基于种群聚类,特有等位基因 个人理解就是ssr引物1 在位点 扩增出的 a b 2个条带(2倍体),ab长度可能相同也可能不相同。如果a条带 在所有样本DNA中的长度一样,就不是多态性条带。如果有不相同就属于多态性条带?还是在学习中慢慢理解吧,不能单独去理解这一个问题花费很多时间。多态性条带应该是属于显性标记中的内容,文献中说ssr也有多态性片段概念 下为ISSR 检测流程,ISSR 引物不分F R, 引物即是F 又是 R。ISSR引物可在dna 两条链中结合。需要某段序列两段具有 反向且互补的重复单位,这样单条引物可扩增到片段。这样需要反向且互补的重复单位间的这段序列尽量在样本间不显示差异。所以才说ISSR是显性,单个ISSR引物在样本中只能扩增出一条带(理论情况),其实不是一条带,只要存在上述情况就可扩增 参考文献为 Schuelke, Markus. "An economic method for the fluorescent labeling of PCR fragments." Nature biotechnology 18.2 (2000): 233-234.对PCR原理还不是很清晰,画图了解以下,红色为M13序列,蓝色为F R引物, 橙色阴影部分表示引物与序列退火,QQQQ为目标序列,NNNN为非目标序列F 趋近0 说明位点under 随机杂交,符合哈温平衡?大量正值表明 近亲杂交(inbreeding)理想种群下的 从转录组或基因组数据中获得批量SSR引物,也可从以往论文中选取引物,进行引物筛选。引物设计使用 oligo7 或 primer 等。oligo是免费的,primer 需付费使用。 筛选引物可通过琼脂糖,聚丙烯酰胺,毛细管电泳检测引物扩增效果,最后筛选到特异性较强的引物进行基因组扩增。 20200901 数据全部完成 本次实验采用 荧光 毛细管电泳。以软件的使用作为实验内容。 软件的具体用法见文集中的软件使用说明 ,其实手册已经写的很详细了。 最终数据结果如下,会得到具体片段长度的大小共24个位置无数据 使用GenAlex分析遗传多样性参数,但是不太明白这些参数的含义,还担心在计算的过程中会遗漏数据,就跑2次,看下结果一样不 分不同地区比较不同种源的遗传多样性指数差异。目前以省划分最低分类 杂合度低 与 自花授粉有关? GenAlex 无法计算PIC,使用 Powermarker Powermarker计算遗传距离,UPGMA或NJ 法建树 DARwin 也有文章 使用这个软件 ,很多文章使用 DARwin 吗,Powermarker 比较简单 得到树文件,使用itol美化。统计每个亚群下的种群个数。 GenAlEx 中有此功能 variance components of the populations, 即种群遗传分化 可根据地区,聚类,structure 的种群分类来做此分析, 并比较不同分类下的遗传差异,种群内外变异差异。 (1)GenAlex中AMOVA分析需要确定以下参数聚类 与 structure 之间的某些种群用venn 图表示共有样本 GenAlEx 可用, 每个种群中个体根据 probability score 划分为 pure 或admixture,单独划为一个subgroup? 根据第一次划分的种群,可以继续划分sub-sub group (1) 使用Structure Harvester获得最佳k (2)Clumpp 重复抽样从多个run获得结果 (3) distruct 画图
2023-06-27 17:25:521

菌液PCR是阳性,却提不出来阳性质粒,求助

这个我也遇到过,可能你的菌液PCR是假阳性。建议:1.菌落PCR鉴定推荐使用通用引物,因为不管是M13,RVM也好,这些东西从细菌里面扩东西出来的可能性是零,因为那些通用引物一般都不会是从细菌来的,像那几个T载体用的通用引物肯定不可能从细菌里面扩东西出来。 2.一定要做阴性对照。希望能够帮到你
2023-06-27 17:26:131

pUC19质粒有何特点?

pUC19载体适合于DNA片段的克隆、进行DNA测序、对外源基因进行表达等。由于在lacZ领域中含有多克隆位点,因此在以lacZ缺欠细胞作为宿主 (如:JM109等) 进行转化后,在含有IPTG、X-Gal 的平板培养基上进行培养时,可以很容易地通过蓝白筛选,判断载体中有无DNA片段的插入。同时还可以通过载体上的lac promoter表达外源基因,对插入载体中的DNA片段进行测序等。进行DNA测序时,可以方便地使用M13系列的通用引物。
2023-06-27 17:26:201

请教pEASY-T1 simple 载体TA克隆后通用测序引物的选择

使用他家试剂盒里面带的测序引物,如果你没有试剂盒里的引物,可以根据说明书里有的引物序列,自己合成,或者使用 M13-47 / RV-M / T7
2023-06-27 17:26:291

急!!学习病毒学与病毒病的重要性。1000字以上。

学习病毒学的重要性体现在哪几方面
2023-06-27 17:26:392

列举常用的生物信息学数据库及序列对比常用软件及特点

太多了 说不完
2023-06-27 17:26:493

如何对某种生物进行全面的基因组学研究?

对生物进行基因组学研究即对之进行核酸序列分析,方法是人工合成不同长度的成套DNA片段并以放射性元素等方式标记,各个人工合成片段起点碱基相同,终点不同,使DNA链中的每个核苷酸处都有DNA的断裂或终止,通过聚丙烯酰胺电泳,能够将相差一个核苷酸的DNA片段分开,用适当的检测手段读出核苷酸序列,再通过计算机分析得到一个完整的DNA序列。这样得到的DNA序列建立起基因数据库,由于生物具有同源性,在之后的生物的测序中可以利用已得的数据,减少工作量,并可以比较生物之间的亲缘关系。推荐下面资料中列出的第一个网页~-----以上手工录入,以下来自网络-----核酸序列的一般分析流程:http://www.bioguider.com/Article_Print.asp?ArticleID=1851核酸是生命的遗传物质,遗传信息存在于4种单核苷酸(A,G,C,T/U)按不同顺序连接而成的核酸分子中,迅速准确地解读决定生命性状的密码,测定基因组的核酸序列,对于识别病原,揭示疫病变化规律是任何方法都不能相比的,但它也是最烦琐和最复杂的检测技术,目前在动物检疫中尚不多采用。 目前应用最多的快速测序技术是Sanger等(1977)提出的双脱氧链终止法。其原理是:核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,只要双脱氧碱基掺入链端,该链就停止延长,链端掺入单脱氧碱基的片段可继续延长。如此每管反应体系中便合成以共同引物为5"端,以双脱氧碱基为3"端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳。以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3"端的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。 (一) Sanger双脱氧链终止法(酶法)测序程序 操作程序是按DNA复制和RNA反转录的原理设计的。 1.分离待测核酸模板,模板可以是DNA,也可以是RNA,可以是双链,也可以是单链。 2.在4只试管中加入适当的引物、模板、4种dNTP(包括放射性标记dATP,例如?32 PdATP和DNA聚合酶(如以RNA为模板,则用反转录酶),再在上述4只管中分别加入一种一定浓度的ddNTP(双脱氧核苷酸)。 3.与单链模板(如以双链作模板,要作变性处理)结合的引物,在DNA聚合酶作用下从5"端向3"端进行延伸反应,32P随着引物延长掺入到新合成链中。当ddNTP掺入时,由于它在3"位置没有羟基,故不与下一个dNTP结合,从而使链延伸终止。ddNTP在不同位置掺入,因而产生一系列不同长度的新的DNA链。 4.用变性聚丙烯酰胺凝胶电泳同时分离4只反应管中的反应产物,由于每一反应管中只加一种ddNTP(如ddATP),则该管中各种长度的DNA都终止于该种碱基(如A)处。所以凝胶电泳中该泳道不同带的DNA 3" 末端都为同一种双脱氧碱基。 5.放射自显影。根据四泳道的编号和每个泳道中DNA带的位置直接从自显影图谱上读出与模板链互补的新链序列。 (二) 双脱氧测序的示剂及具体操作步骤(以双链DNA测序为例)。 1.变性双链模板的制备 (1) 材料 Tris/葡萄糖缓冲液(20mmol/L Tris-HCl pH8.0,10mmo1/L EDTA,50mmo1/L 葡萄糖),1% SDS,0.2mo1/L NaOH,异丙醇,TE缓冲液pH8.0,4mol/L LiCl,冰冷 70%和无水乙醇,2mol/L NaOH,2mmol/L EDTA。 (2) 配制方法① 取1.5ml处于对数生产期的培养菌液(含有待测病毒核酸的重组质粒模板),离心除去上清液后,用150?l Tris/葡萄糖缓冲液 重悬菌团,在室温下放置5分钟。 ② 加入300?l的1%SDS,0.2mol/L NaOH,颠倒混合约15次,在室温下放置15分钟,加入225ml 3mol/L醋酸钠(pH4.5),颠倒约15次混合,在冰浴中放置45分钟,然后离心5分钟。③ 将650?l上清液转移至一支新管中,加入650?l异丙醇,混合后在室温下放置10分钟,离心5分钟后弃去异丙醇,抽真空干燥沉淀。 ④ 用125?l TE(pH 8.0)重新溶解DNA,加入375?l的4mol/L LiCl,在冰浴中放置20分钟后,于4℃下离心5分钟。 ⑤ 将上清液转移至一支新管中用饱和苯酚抽提后再用氯仿抽提,加入2倍体积的异丙醇,在室温下沉淀30分钟,离心5分钟,弃去上清液。⑥ 用冰冷的70%乙醇洗沉淀,离心5分钟,弃去上清液并干燥,用50?l TE缓冲液重新溶解沉淀。用紫外分光光度计测定质粒DNA含量。 ⑦ 取0.2?g质粒DNA,并将体积调至9?l,加入1?l 2mol/L NaOH,2mmol/L EDTA,在室温下放置5分钟,加入2?l 30mol/L醋酸钠(pH 4.5)和8?l水。⑧ 加入6?l冰冷无水乙醇,混合后在干冰/乙醇浴中放置15分钟,在4℃下离心5分钟,小心地弃去上清液,用冰冷的70%乙醇洗沉淀,离心5分钟并小心地弃去上清液,真空抽干沉淀,并用TE缓冲液重新溶解沉淀。 2.延伸和终止反应 以利用T7DNA聚合酶进行的双脱氧链终止反应为例。 (1) 材料 变性的双链DNA模板(溶解在TE缓冲液中),0.5pmol/?L寡核苷酸引物(溶解在TE中,-20℃贮存),5×测序缓冲液(200mmol/L Tris pH7.5,50mmol/L MgCl2,-20℃贮存),0.1mol/l DTT(当月新配-20℃贮存),15pmol/L的3种dNTP混合物(缺dATP),1 000至1 500Ci/mmol ?32p dATP(在-20℃下达4至6周),修饰的T7 DNA聚合酶,标准酶稀释溶液(20mmol/L Tris-HCl pH7.5,0.5mg/mlBSA,10mmol/L ?- 巯基乙醇,4℃贮存),终止混合物(表2-30),甲酰胺上样缓冲液(0.2ml 0.5mol/LEDTA pH8.0,10mg溴酚蓝,10mg二甲苯青,10ml甲酰胺)。 表2-30 T7DNA聚合酶终止反应混合物 反应成分 ddG ddA ddT ddC 最终浓度 H2O 15 15 15 15 - 5×测序缓冲液 6 6 6 6 - 1mmol/L 4dNTP 6 6 6 6 200μmol/L 1mmol/L ddGTP 3 - - - 20μmol/L 1mmol/L ddATP - 3 - - 20μmol/L 1mmol/L ddTTP - - 3 - 20μmol/L 1mmol/L ddCTP - - - 3 20μmol/L (2) 配制方法 ① 取4支0.5?l小离心管,标上G、A、T、C,每管加入7?l变性的双链DNA模板(分别为1和2?g),1?l寡核苷酸引物和2?l 5×测序缓冲液混合,65℃保温2分钟,在室温下冷却30分钟。 ② 每管加入1?l 0.1mol/L DTT,2?l 1.5mol/L 3种dNTP混合物,0.5?l ?32P dATP和2?l(2IU)修饰的T7DNA多聚酶混合物,在室温下放置5分钟。 ③ 按标记每管分别加入3?l 4种ddNTP终止混合物的一种。 ④ 短促离心后,在37℃下保温5分钟。 ⑤ 加入5ml甲酰胺上样缓冲液,上样前在80℃下加热2分钟,并迅速置于冰浴上,每个样品取3?l,上样电泳。 3.测序反应物电泳和序列读取 (1) 按普通聚丙烯酰胺凝胶制作方法制作梯度胶。 (2) 按G、A、T、C次序加入每种样品,在G、A和T各泳道上样1ml,而在C泳道上样1.5?l。 (3) 上样完毕加压1700V电泳,根据样品中溴酚蓝和二甲苯青染料迁移情况确定电泳时间。 (4) 电泳完毕,在10℃冰醋酸中漂洗30分钟脱去尿素。 (5) 在60℃或80℃干燥30分钟后,放射自显影读取序列。 (三) 研究进展 1.几种快速获取模板的方法 (1) 单链噬菌体系统 利用克隆载体M13噬菌体浸染大肠杆菌,在细菌细胞噬菌体基因组以复制型双链DNA存在,并经滚环式复制产生子代噬菌体正链DNA,同时合成有关蛋白,装配后释放到细胞外。成熟的M13噬菌体含单链DNA,经克隆的筛选、抽提纯化,得到所需模板。 (2) 杂交质粒系统 此系统除具M13系统的功能外,还能作为表达载体直接用于DNA序列分析和基因表达研究。 (3) 直接利用RNA进行序列测定 在杂交质粒的多克隆位点两侧插入一段能被噬菌体 RNA聚合酶识别的启动子,在噬菌体RNA聚合酶的作用下,在体外将克隆的外源双链DNA转录为单链的RNA,以RNA为模板,与引物退火后,在反转录酶(如AMV)作用下,按双脱氧链终止法步骤进行序列分析。 (4) PCR技术的采用 PCR技术的出现,使序列分析用DNA模板的制备更加方便。① 例如用PCR法合成双链DNA片段,直接用双链进行测序。② 在PCR扩增时,两个引物之一的 5"端生物素化,扩增后将DNA变性,通过亲和素柱,分离5"端含生物素的单链。③ 利用不对称PCR,按1:50匹配两引物含量,产生单链DNA。④ GAMTS法,在两个PCR引物之一的 5"端连接噬菌体RNA聚合酶启动子序列,这样经PCR扩增产生的双链DNA片段的一端就带上了该启动子序列。然后以扩增出的双链DNA为模板,在噬菌体RNA聚合酶作用下转录出单链RNA。再以单链RNA为模板进行序列分析。 2.采用高分辨率的凝胶电泳技术 (1) 采用薄胶 凝胶厚度减少到0.5mm或0.1mm,样品泳动加快,自显影时减少?粒子在凝胶中的散射,提高分辨率。 (2) 采用梯度胶 包括离子梯度和浓度梯度,使DNA片段泳动均匀,大小不同而又很相近的大片段更易拉开距离。 (3) 采用鲨鱼齿梳 使相邻泳道相互靠近,不但在自显影图上更易判定相邻带的上下关系,而且可以增加每板凝胶的泳道数目。 3.DNA序列分析自动化 (1) 放射自显影自动读谱仪 在电泳装置中装一个高灵敏度放射性探测仪,在电泳过程中将结果输入计算机,获得分析结果。 (2) 用荧光标记引物或荧光标记ddNTP 可在电泳过程中以激光扫描装置识别DNA条带,经计算机处理后得到序列分析结果。此法适宜大量样品的测序。自1998年美国塞莱拉遗传公司组建以来,人类基因组研究开始由两部分科学家同时展开,分别是由公共经费支持的人类基因组工程和美国塞莱拉遗传公司。在研究过程中,他们也分别采用了两种不同的测序和分析的方法。塞莱拉公司的核心分析方法被称为"霰弹法",人类基因组工程则采用了"克隆法"。 所谓"霰弹法",其实是一种高度计算机化的方法,它先把基因组随机分成已知长度(2000个碱基对、1万个碱基对、5万个碱基对)的片段,然后用数学算法将这些片段组装成毗邻的大段并确定它们在基因组上的正确位置。 塞莱拉公司的科学家先用霰弹法测序DNA,并将整个基因组覆盖8次,然后用两个数学公式将人类基因组序列多次组装起来,确定出基因中的转录单元,预测出60%的已识别基因的分子功能。最后研究人员将人类基因组信息与此前已完成的果蝇和线虫的基因组序列进行比较,从而找出了三者共有的核心功能。 而人类基因组工程采用的"克隆法"则通过先复制更大段的人类基因序列,然后将它们绘制到基因组的适当区域进行研究。这种方法需要研究人员在早期把较多的时间和精力放到克隆和绘制草图上。 两个研究组将所得数据进行对比,经人类基因组工程的科学家、《科学》和《自然》杂志高级指导编辑评估,表明塞莱拉公司的基因组分析与人类基因组工程的分析结果虽然存在一些差异,但大部分地方都有极高的吻合度。 塞莱拉公司测定的序列覆盖了95%以上的人类基因组,其中约85%的人类基因组存在于按照正确顺序排列、至少包含50万个碱基对的片段中。这一序列为人类至少拥有2.6383万个控制合成蛋白质的基因提供了有力的证据,也为另外1.2731万个假设基因的存在提供了较弱的证据。Margulies等人发明了一种平行的而且简单的DNA测序系统。这种测序系统能够在4小时左右的时间里以99%以上的准确率测定250万碱基对。在技术水平上,这种方法的测序速度比传统的Sanger测序法提高了大约100倍。这种方法的一个重要的技术优势在于样品的制备。通过断裂基因组得到的短的DNA随机片断的文库被吸附在念珠上,然后被乳化(emulsified),进入发应孔(reaction wells)中扩增和测序,因此不需要亚克隆(subclone)每个片断。为了验证这种方法的准确性,研究者用鸟枪法(shotgun sequencing)测序并重新拼接了生殖器支原体的基因组(Mycoplasma genitalium genome)(0.58megabase)。新方法测序结果覆盖了96%,准确率达到了99.96%。在以肺炎链球菌(Streptococcus pneumoniae)的基因组(2.1megabase)为样本时得到了同样的结果。2001年人类基因组序列草图的发表使得两种不同测序方法形成鲜明对比。“私人”Celera序列采用“全基因组随机”法,即把基因组切成小DNA片段,对其各自进行测序,然后根据基因重叠将它们重新排序;“公共”序列采用“克隆顺序”法来对一个染色体上已知位置的大块DNA进行测序。公共测序工作在今后项目中也将采用随机方法,所以了解随机方法的测序能力至关重要。研究人员对最近的序列(公共版本的“Build34”)做了比较,发现随机方法的主要局限性是片段复制不够清楚。在很多情况下,复制是不存在的,导致对基因组大小的估计过低。但这一比较的确为怎样改进算法和杂合策略、以恢复“困难”区域提供了线索。
2023-06-27 17:27:001

FRET引物是什么

Taqman探针法的出现是定量PCR技术的重要里程碑,之后在此基础上发展出了杂交探针法,以及荧光引物法,是对探针法的不断改进和简化.如果希望全面掌握定量PCR技术的研究人员就不能错过这些定量检测技术. 要提到荧光探针或者荧光引物,有一个基础概念需要首先明确,那就是荧光共振能量转移(fluorescence resonance energy transfer, FRET):一对合适的荧光物质可以构成一个能量供体 (donor) 和能量受体 (acceptor) 对, 其中供体的发射光谱与受体的吸收光谱重叠,当它们在空间上相互接近到一定距离(1—10 nm)时,激发供体而产生的荧光能量正好被附近的受体吸收,使得供体发射的荧光强度衰减,受体荧光分子的荧光强度增强.能量传递的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等有关.定量PCR所涉及的荧光探针和荧光引物的检测都这个FRET原理相关. FRET技术 原理:罗氏专利的FRET探针又称为双杂交探针,或者LightCycle探针.FRET探针由两条和模版互补、且相邻的特异探针组成(距离1—5bp),上游探针的3`端标记供体荧光基团,相邻下游探针的5`端标记Red 640受体荧光基团.当复性时,两探针同时结合在模板上,供体基团和Red640受体基团紧密相邻(距离1—5bp),激发供体产生的荧光能量被Red640基团吸收,使得检测探头可以检测到Red640发出波长为640的荧光.当变性时,两探针游离,两基团距离远,不能检测到640波长的荧光.FRET探针检测的信号是退火时的实时信号,每次检测信号始终严格对应模版的数量,非累积信号,可以用于做Tm曲线和SNP检测.常用的受体荧光基团除了LC-Red640还有LC-Red705.两个单标记探针的长短不影响信号的传递,而探针间的距离通常为1-5bp(虽然越短越好,还是要留点空间避免相互之间的反应). 我们前面提到,Taqman水解探针法中,一但报告基团水解离开淬灭基团,就一直游离于反应体系中可被检测,所以检测的是累积荧光,是不可逆的.杂交探针不同,是复性时两条特异探针杂交到模板上,相互靠近而产生检测信号,到升温变性探针远离模版就没有信号,所以检测的是实时信号,是可逆的,所以可以进行熔解曲线的分析,还可以用于进行突变分析,SNP基因分型以及产物鉴别.比如一旦探针位置上出现有点突变,通过熔解曲线就可以很快分析出来,这也是Taqman法无法做到的.另外,由于采用2条模版特异的探针,杂交探针法的专一性无疑更高于其他方法,不受非特异产物的影响. Fret探针法由于需要合成2条探针,探针的末端要封闭以避免反应,所以合成的成本会比较高,也比较麻烦.但实际上,Fret探针的设计其实比Taqman探针容易,因为Taqman探针要求一定的长度以保证探针的特异性和结合模版的能力,但是长度会导致两末端的荧光基团距离远而使得荧光共振能量传递的效率降低,淬灭不彻底.Fret探针就不受这个限制.不管怎么说,多数人还是习惯认为单探针比合成2条探针要简单. 荧光共振能量转移(FRET)(Fluorescence / F?rster resonance energy transfer)是比较分子间距离与分子直径的有效工具,广泛用于研究各种涉及分子间距离变化的生物现象,可以定量测量两个发光基团之间的距离,在蛋白质空间构象、蛋白与蛋白间相互作用、核酸与蛋白间相互作用以及其它一些方面的研究中得到广泛应用. 当生色团被光照时,被照射激发的分子可以通过散发能量来返回到基态1-3.光能可被生色团在10-15秒内吸收而在10-9秒内再发射出来.然而,也有可能被激发分子并不发光而将能量传递给别的生色团或是另外的荧光素,这些荧光素可以在相同的时间量级内发荧光,这后一种现象称为荧光共振能量转移(FRET).FRET是通过分子间的电偶极相互作用将供体激发态能量转移给受体激发态的过程,是一种非辐射跃迁.当FRET发生时,供体的荧光减弱而受体的荧光增强.荧光素在激发态的寿命是10-9秒,在发射荧光、非辐射性发射和将激发能传递给周围的介质三者之间存在竞争.如果荧光能量转移发生,激发态能就会从供体传递给受体,荧光光子由受体发出. FRET发生的基本条件是:①、供体和受体的距离必须达到一定的数量级(20-100à)②、受体的吸收光谱必须与供体的发射光谱相重叠.③、供体和受体能量转移偶极子的方向必须近似地平行.F?rster依据供体与受体的相对距离和偶极子的方向关系解释了FRET发生的原理.能量转移的效率是有一些参数决定的. 我们可以从能量转移的速率和效率得到许多信息:可以知道供受体的距离很近(约0.5-10nM),得到距离的数量,有时能得到它们的方位关系.一般地每一对供受体可被分别考虑,每对都由于其特殊的距离和方位和光谱特征而表现出其能量转移的可能性,这就使我们能直接掌握分子的结构、空间构象变化和结合反应.如果我们观察的是一个分子集合,我们得到的是对应于相关参数分配的光谱信息.这种光谱参数分配能提供分子构象分配情况信息.能量转移是一个时间依赖过程,我们能够得到的有关发生在能量转移和荧光衰减时间数量级、分子运动和分子转动的动力学信息,这个数量级可以是皮秒到毫秒数量级.这是一个非常广的时间区段,可以灵活地选择生色团.在所有荧光技术中,FRET的独特性就在于此. 在多数情况下,供体与受体染料是不同的,FRET的可以通过对供体的荧光淬灭和受体的敏化荧光的产生来检测.当供体和受体是相同的染料时,可通过荧光的去极化来检测.因为R0是受环境影响的,在实际中具体的实验条件下它的值是可变化的.不产生荧光的受体比如dabcyl和QSY染料的优势在于能够减少可能由受体本身直接产生的荧光背景的干扰.对于相互作用的分子之间的FRET分析往往受到供受体荧光素各组分之间的相互影响并影响FRET的效率.比如:如果所有的供体都与一个受体结合了,供体荧光寿命就随两者距离的改变而呈一次幂变化.但在一种混合状态,有不同的供受体距离或有未结合的供体得到的是荧光寿命衰减的多次幂变化,未发生作用的分子对FRET的效率产生影响.高的FRET效率和低的相互作用分子浓度可导致一个错误推论认为在供体受体之间有小的或没有相互作用.如果蛋白相互作用的细胞内定位空间大小超出了显微成像的分辨率,那么我们获得的是一种平均值,也会导致对生物效应的错误解释16.多光子显微技术尤其是双光子技术比共聚焦显微镜更有优势.使用近红外激发光引起探针荧光素的非线性吸收,因而激发光在聚焦镜平面的强度被限制在一个小的剂量范围内,荧光淬灭和光对样品的损伤大大减少,对于光敏感的样品的观察也成为可能. 用FLIM(fluorescence lifetime imaging microscopy)是一种较新的检测FRET的方法2. FLIM技术有两种:时间域(time-domain)和频率域(frequency-domain).①、时间域是短的脉冲光激发样品,荧光信号强度作为时间的函数.最新的TCSPC(time –correlated-single-proton-counting )技术与多光子激发系统的结合使得分辨率达到在组织和细胞内飞升(femto-litre)的水平.TCSPC的原理:样品被脉冲的激光重复激发,而每次脉冲激发的能量远不能引起一个光子发射.光子检测器能启动定时器,并在下一次脉冲到来时停止计时此过程反复重复,就得到了荧光衰减的直方图.TCSPC被认为比较费时间,但TCSPC以其近乎理想的计数效率和低的激发光剂量(减少荧光淬灭和毒性作用)以及高的时间分辨率而优于现有的其他方法.在计数速度为1MHZ时,获得10000个光子花20毫秒,一个128*128像素的图象在3分钟内完成,这样得到的信躁比要比那些靠牺牲分辨率来提高速度或为了缩短时间而牺牲信躁比要更优越.②、频率域原理:样品被强度调制的激发光激发,激发光的频率和样品荧光寿命的倒数成比例.这时荧光的发射频率与调制的频率一致,时间变化和解调也与激发光一致,可用来计算荧光寿命.这种技术被广泛应用在远场和共聚焦显微技术上. 生物科学的一个巨大挑战就是决定组成生物结构的分子或超分子的空间距离和分布,许多的生物现象是发生在相互作用分子的界面上,能够告诉我们有关分子相互作用的技术对我们非常重要.一旦相互分离的的目标空间排列被明确、距离和相互的方向明确了,我们就更能确信地提出生物结构是如何发挥作用的设想并证实它.对于空间关系的了解也使我们能更好地解释动态现象,知道了一部分结构的空间位置帮助我们进一步提出一些分子间相互作用的具体的问题.FRET被广泛应用的原因是它提供了分子间的距离、方向(定位)和动力学特征的信息,更好地回答有关分子距离数量级的问题. FRET的应用: ⑴、可用于研究蛋白质以及蛋白复合体的结构和空间构象与布局 Xing J用FRET研究了肌凝蛋白亚结构(A S1)内部的运动情况5.他们把DABMI连接于CYS374上,作为受体荧光素,再用两种不同的荧光素IAEDANS和MIANS先后标于SH1和SH2上.在紧张态的AS1中,当用MIANS作为供体荧光素时,SH1和SH2两个位点的距离大致相等(45à),而加入ADP和Vi(orthovanadate)后,CYS374和SH1的距离缩短了7-8A,而SH2与CYS374的距离未见变化.当以AEDANS作为能量供体荧光素时得到类似的结果.结论为MgADP和Vi导致了SH1向肌动蛋白的位点运动而SH2对于S1相对饱和的激动位点不敏感而不发生相对运动. Yin Luo4等人用FRET结合几何分析手段研究了兔子骨骼肌肌钙蛋白的四级结构和IN1-INC二聚体内(TN1)上的突变CYS133相对于INC 上九个突变CYS的定位情况,分别就钙离子存在和不存在两种情况进行比较,用(1,5-IAEDANS)作为荧光供体,DAB-MAL或DDP-MAL为荧光受体通过FRET测量CLYS133和每个INC上的突变CYS残基的距离,再用数学方法处理INC晶体结构数据和FRET测量值,得到各CYC残基在IN中的定位.该结果对于揭示IN1在IN复合体中的定位以及IN的功能有很大的提示作用. Erickson JW6等用FRET确定在转导蛋白上鸟苷酸结合位点(α-T)的赖氨酸残基与CGMP磷酸二脂酶γ亚基(γ-PDE)构象敏感位点的半胱氨酸残基(68残基)的位置关系.半胱氨酸残基(68残基)在γ-PDE的位点对于有活性或失活的α-T的结合敏感而引起构象改变.这一点被实验所证实:将α-T-GDP复合体加入被对环境敏感的探针(MIANS)标记的γ-PDE亚基能引起MIANS荧光的增强,而氟化铝使α-T-GDP激活后再结合到γ-PDE时会导致MIANS荧光的淬灭.氟化铝引起的MIANS-γ-PDE的荧光变化的时间和α-T的内部荧光的变化相一致,而这一时间也对应于α-T活性空间构象变化的时间.这些结果提示活化状态的α-T亚结构导致了临近的γ-PDE的半胱氨酸残基(68残基)结合位点的空间结构的变化. Christoph Biskup14等用confocal和streak照相机观察了钠离子通道亚单位之间的关系.钠离子通道在可兴奋组织可形成动作电位,它由一个孔状的α亚基和β亚基组成α亚基能单独发挥功能.人心肌的钠离子通道β1亚基仅仅对α亚基有轻微影响,它帮助提高峰电位的强度以及加速从失活状态恢复.峰电位的强度的增加提示β1亚基导致了质膜上通道的密度增加,可以猜想α亚基在向质膜转运的过程是在早期已经和β1亚基结合.为了证实这个猜想,他们用了能提高FRET效率的方法:固定模式的激光、共聚焦显微镜和streak照相机.两个亚单位分别用兰色和黄色荧光蛋白标记,在人的胎肾细胞(HEK293)表达.内质网膜的通道亚基之间的FRET表明两亚单位在到达质膜之前就已经结合了.该方法能同时测量供体和受体的荧光的衰减并提供了测量FRET效率的有效方法. ⑵、研究蛋白质的折叠 蛋白质折叠是一个非常繁杂的过程,因为它涉及到大量的途径来将无数去折叠构象连接成为唯一的天然构象.在用实验方法来探索各个途径所占比例的漫长过程中,FRET已经能够测量自由状态的单分子蛋白折叠的表面自由能特征,这些数据在分子集合是难以得到的. 受体/配体相互作用.Benjamin Schuler15等将一个绿色供体染料和一个红色受体染料连接在冷休克蛋白(CspTm)(来源于超嗜温细菌Thermotoga maritime)的氨基和羧基端的半胱氨酸残基上.选择该蛋白是因为它的高度稳定性,能够承受结构方面的干扰以及它的在分子集合实验中的热力学和动力学行为的简单性.如果一个折叠好的CspTm被激光照射,被激发的供体染料将能量快速传递给受体染料,因为它们的间隔仅仅1纳米,大部分光子由受体发出.当加入化学变性剂后蛋白去折叠,导致供体和受体的平均距离变大,能量转移变小,被受体发射的光子减少.为了使结果量化,由两种不同长度的标记相同染料的多聚脯氨酸螺旋作为控制系统,在供体和受体之间构成了固定的间隔,使染料之间的距离不因变性而变化,其他的参数和实验组的参数一样变化.通过相关参数的比较处理,得到去折叠的多肽重新形成构象的时间限度和折叠自由能障的高度限制,结果与简单的统计模型一致. ⑶、免疫测定 免疫分子之间的相互作用和各种免疫现象可结合FRET加以研究,如利用抗原与抗体、补体与抗体、CD分子之间的特异结合可发挥FRET的优势,目前FRET在免疫方面的应用已有很多.Morrison LE22等用长寿命供体和短寿命受体、脉冲激光以及电子门控检测器将受体射线中来源于能量转移的部分和来源于吸收激发光的部分分开.理论方程表明提高与激发脉冲相关的积分延搁能大大加强来源于能量转移的部分.人免疫球蛋白IgG Fab"的抗体被标记上pyrenebutyrate而IgG Fab"被藻红素(B-phycoerythrin)标记,在氮激光的激发下,溶液中产生了从pyrenebutyrate到B-phycoerythrin 的FRET,受体荧光检测用0和20纳秒两种积分延搁,在三个系列的免疫测定中,当用20纳秒积分时测量时,受体荧光中来源于能量转移的部分和来源于吸收激发光的部分的比率增加了9-15倍,实验数据和理论预测基本一致. ⑷、单分子间相互作用 如何得到单分子之间作用的信息?FRET作为一种有效的工具已经应用的这方面的研究.Ha T21等用FRET来探讨两个单分子之间的相互作用.他们用近场扫描显微镜观察单个的供体和单个的受体得到双色图象,并得到用短DNA分子连接的供体和受体荧光素的发射光谱.光裂解动力学用于研究FRET的出现和效率.经典的测算分子集合能量转移的方程改变为单分子测算.与分子集合测量不同的是单分子水平的动力学事件是可以用单对FRET来观察的,因为该结果并不为分子集团的随机平均化所消除.对于发生在纳米尺度的象旋转、位置变化或构象变化等现象可以用单对FRET来研究. ⑸、核酸的结构与空间构象 Xiaowei Zhuang19等人用FRET研究了单分子的四膜虫嗜热核酸酶的催化作用和折叠.用染料标记并且表面固定的核酸酶在功能上和未加以修饰的核酸酶没有区别.能够观察到从酶中心开始的双链docks 和 undocks的可逆折叠过程的单分子时间轨迹,并能确定折叠速度常数和转变态的特征.很难在分子集合出现和在分子集合水平衡量的docked态的全部折叠过程、中间折叠态以及折叠的多条途径都被观察到了,除此之外又发现了一种折叠常数为1/秒的新的折叠途径 TomaszHeyduk Eua Heyduk12 用FRET检测序列特异的DNA结合蛋白的活性.两个DNA片段各构成大约一半蛋白结合位点的DNA链,分别用供体荧光素和受体荧光素标记.两片段有短的互补区可供退火连接.互补区的长度和片段的浓度都保持在一定水平使自发的退火连接非常少,在没有蛋白出现时无能量转移的发生.当结合蛋白出现时,它对于全段的DNA的高亲和力将促使两片段连接,特异蛋白—DNA复合物出现,供体和受体荧光素因而靠近发生高效的FRET信号. FRET已经被用于研究一系列荧光标记的结合到大肠杆菌DNA聚合酶1 Klenow 片段的DNA和引物的单链构象20.DNA片段被tetramethylrhodamine (TMR)所修饰作为FRET的受体,荧光供体由双突变KF得到,.模板引物的设计允许探针在蛋白和DNA复合体的位置随着引物链的扩展(加入脱氧三磷酸核苷酸引起)而变化.TMR受体探针占据了模板引物的七个位置(五个在单链区,两个在双链区).每个位置的FRET效率由受体出现和消失的荧光发射峰的积分计算得到.结果表明FRET效率呈正弦变化,其周期为大约10个碱基对,这和用简单的螺旋结构模型得出的方程相符合.该数据支持DNA模板引物的单链部分在结合到KF后就变成螺旋构型的结论. ⑹细胞内离子浓度及动力学特征描述: Alsushi Miyawakl 7 等用荧光素指示钙离子在细胞内的分布情况.他们把突变的兰色GFP、钙调蛋白、钙调蛋白的结合蛋白M13和增强的GFP串联融合,并称之为cameleons.钙离子的结合可以使钙调蛋白掩盖M13的模序而增强了位于两侧的GFP之间的FRET.突变的钙调蛋白可调节对钙离子的亲和力,从而能测量自由钙离子的浓度变化(10-8-10-2M).在用携带适当定位信号的CDNA转染的HELA细胞内,钙离子在胞质、胞核、内质网内的动力学特征也可描述:内质网内的钙离子浓度在安静下是60-400M,而当钙动员时为1-50M.FRET还是蓝GFP标记的钙调蛋白和黄GFP标记的M13之间可逆作用的指示器.所以在GFP突变体之间的FRET可以检测单个活细胞内钙离子的定位以及异源蛋白二聚化的情况.
2023-06-27 17:27:081

基因工程在国际方面有哪些成就?

高中的生物书上也有,例如基因修复,培养转基因动植物等。
2023-06-27 17:27:193

请帮忙介绍一下pSURE-T 载体连接试剂盒特点,谢谢

pSURE-T是一种新颖的pUC系列T载体,和传统T载体ECOR V切开后加T方法不同,pSURE-T通过Xcm Ⅰ酶切后使其多克隆位点两侧的3"末端直接产生未配对的T碱基,因此有更高的重组效率。其多克隆位点有更多的单切点和β-半乳糖苷酶阅读框架的调整大大方便了克隆的蓝/白筛选。插入位点两端独特设计的两个PstI位点使插入片段可以用Pst Ⅰ单酶切进行检测,也可以用非常廉价而高效的EcoR I和Hind III 双酶切进行检测。可以用M13通用引物和T7启动子引物对PCR产物进行测序。pSURE-T含有T7 RNA聚合酶的启动子,可以对插入片段进行体外转录。许多高温DNA聚合酶,如Taq DNA聚合酶等扩增的PCR产物在3"-末端后都带有一个突出的碱基A,这样的PCR产物可以用3"-末端后带有一个突出碱基T的载体方便地进行克隆。pSURE-T载体是为简化PCR产物的克隆而设计的。
2023-06-27 17:27:282

有人用过Takara的pMD 18-T Vector吗

很好用的,只是比国内其他的T载体贵。TAKARA的pMD 18-T Vector有通用的引物M13+和M13-(一般测序公司免费提供的),都可以进行测序的,随便选那个都可以。关键是看你的片段是多长,如果是600到1000BP之间,那就可以选M13+和M13-,让公司给你双向测之,(两段OVERLAP就可以测通你的片段)这样你就可以不用再设计测序引物了,节约费用。
2023-06-27 17:27:361

求助通用引物验证阳性克隆

做PCR都要考虑Tm值吧。M13引物一般是M13F, M13R;M13F(-47), M13R(-48)配对使用。如果做菌落PCR验证阳性克隆的话,如果只是把目的片段插入到多克隆位点处,这两对引物哪一对都可以的。如果是样品需要测序的话,由于接近引物的读出效果不好,如果克隆的位点接近CMS的两端,一般需要用M13F(-47), M13R(-48)来测序。
2023-06-27 17:27:571

PMD-18克隆测序,M13-F,M13-P是什么意思

应该是M13-F,M13-R.代表的是通用引物的上游和下游!
2023-06-27 17:28:041

什么叫通用引物,都有哪些?

通用引物:一般是指某基因外围保守序列.虽然这个基因可能是序列多变的,(如同功酶),但两侧翼序列则是保守的.利用俩侧翼保守序列设计出来的引物,称为通用引物. 有M13、T7、T3、Sp6
2023-06-27 17:28:131

PCR引物和测序引物有什么区别

没有区别,只是用的地方不同。
2023-06-27 17:28:233

t7通用引物退火温度

50度。测序引物的设计原则与PCR引物基本一至,但是,因为,ABIBDT试剂合测序PCR的退火温度提供的是50度,所以,为使测序PCR反应达到最佳反应效率,一般设计其退火温度为50度左右,所以通用测序引物M13、T7等都在50度退火。通用引物是一般和载体多克隆位点两旁的序列匹配,或者是与载体里面的一些启动、终止元件匹配。这样不管载体插入什么DNA片段,都可以用通用引物扩出来。通用引物可以用来测序,但是只是“通用”,也不是万能的。
2023-06-27 17:28:411

TAKARA的PMD18-T载体可以用哪个通用引物验证?

用这两种引物:BcaBEST Sequencing Primer M13-47和BcaBEST Sequencing Primer RV-MVector size (bp) 2692Cloning Site 425LacZ α-peptide 146-475Ampicillin resistance gene 1632~2492pUC origin 873-1461primer binding sites:BcaBEST Sequencing Primer M13-47 binding site 352-375BcaBEST Sequencing Primer RV-M binding site 484-507
2023-06-27 17:28:491

pUC19的特点

pUC18、pUC19载体适合于DNA片段的克隆、进行DNA测序、对外源基因进行表达等。由于在lacZ领域中含有多克隆位点,因此在以lacZ缺欠细胞作为宿主 (如:JM109等) 进行转化后,在含有IPTG、X-Gal 的平板培养基上进行培养时,可以很容易地通过蓝白筛选,判断载体中有无DNA片段的插入。同时还可以通过载体上的lac promoter表达外源基因,对插入载体中的DNA片段进行测序等。进行DNA测序时,可以方便地使用M13系列的通用引物。
2023-06-27 17:28:571

pmd-19 t载体用什么引物测序

去购入公司的网站上看看应该会有,应该是这一对M13 RV和M13 M4
2023-06-27 17:29:251

聚合酶链反应的反应体系

PCR基本原理示意图(如右图):在一个典型的PCR反应体系中需加入:适宜的缓冲液、微量的模板DNA、4×dNTPs、耐热性多聚酶、Mg2 和两个合成的DNA引物。模板DNa 94℃变性1min,引物与模板40~60℃退火1min,72℃延伸2min。在首次循环前模板预变性3~5min;在末次循环后,样品仍需继续延伸3~5min以上,确保扩增的DNA为双链DNA。为便于了解PCR反应中各成份的组成,加入量和反应条件,使人们以此为基础,对不同的研究对象逐项改变来找到最佳反应条件,特列举Perkin Elmer Cetus公司Gene Amp DNA试剂盒提供的典型反应条件供参考。 用于PCR的标准缓冲液见PCR操作范例。于72℃时,反应体系的pH值将下降1个单位,接近于7.2。二价阳离子的存在至关重要,影响PCR的特异性和产量。实验表明,Mg2 优于Mn2 ,而Ca2 无任何作用。1.Mg2 浓度Mg2 的最佳浓度为1.5mmol/L(当各种dNTP浓度为200mmol/L时),但并非对任何一种模板与引物的结合都是最佳的。首次使用靶序列和引物结合时,都要把Mg2 浓度调到最佳,其浓度变化范围为1~10mmol/L。Mg2 过量易生成非特异性扩增产物,Mg2 不足易使产量降低。样品中存在的较高浓度的螯合剂如EDTA或高浓度带负电荷的离子基团如磷酸根,会与Mg2 结合而降低Mg2 有效浓度。因此,用作模板的DNA应溶于10mmol/l Tris-HCl(pH7.6)0.1mmol/L EDTA中。dNTP含有磷酸根,其浓度变化将影响Mg2 的有效浓度。标准反应体系中4×dTNPs的总浓度为0.8mmol/L,低于1.5mmol/L的Mg2 浓度。因此,在高浓度DNA及dNTP条件时,必须相应调整Mg2 的浓度。2.Tris -HCl缓冲液在PCR中使用10~50mmol/L的Tris –HCl缓冲液,很少使用其他类型的缓冲液。Tris缓冲液是一种双极化的离子缓冲液,pKa为8.3(20℃),△pKa为0.021/℃。因此,20mmol/l Tris pH8.3(20℃)时,在典型的热循环条件下,真正的pH值在7.8~6.8之间。3.KCl浓度K 浓度在50mmol/L 时能促进引物退火。但研究表明,NaCl浓度在50mmol/L时,KCl浓度高于50mmol/L将会抑制Taq酶的活性,少加或不加KCl对PCR结果没有太大影响。4.明胶明胶和BSA或非离子型去垢剂具有稳定酶的作用。一般用量为100μg/ml,但现在的研究表明,加或不加都能得到良好和PCR结果,影响不大。5.二甲基亚砜(DMSO)在使用Klenow片段进行PCR时DMSO是有用的;加入10%DM-SO有利于减少DNA的二级结构,使(G C)%含量高的模板易于完全变性,在反应体系中加入DMSO使PCR产物直接测序更易进行,但超过10%时会抑制Taq DNA聚合酶的活性,因此,大多数并不使用DMSO。 在PCR反体系中dNTP终浓度高于50mmol/L会抑制Taq酶的活性,使用低浓度dNTP可以减少在非靶位置启动和延伸时核苷酸错误掺入,高浓度dNTPs易产生错误掺入,而浓度太低,势必降低反应物的产量。PCR常用的浓度为50~200μmol/L,不能低于10~15μmol/L。四种dNTP的浓度应相同,其中任何一种浓度偏高或偏低,都会诱导聚合酶的错误掺入,降低合成速度,过早终止反应。决定最低dNTP浓度的因素是靶序列DNA的长度和组成,例如,在100μl反应体系中,4×dNTPs浓度若用20μmol/L,基本满足合成2.6μg DNA或10pmol的400bp序列。50μmol/L的4×dNTPs可以合成6.6μgDNA,而200μmol/L足以合成25μg/DNA。购自厂商的dNTP溶液一般均未调pH,应用1mol/l NaOH将dNTP贮存液pH调至7.0,以保证反应的pH值不低于7.1。市购的游离核苷酸冻干粉,溶解后要用NaOH中和,再用紫外分光光度计定量。 典型PCR反应混合物中,所用酶浓度为2.5U/μl,常用范围为1~4U/100μl。由于DNA模板的不同和引物不同,以及其它条件的差异,多聚酶的用量亦有差异,酶量过多会导致非特异产物的增加。由于生产厂家所用兵配方、制造条件以及活性定义不同,不同厂商供应的TaqDNA聚合酶性能也有所不同。Cetus公司酶定义是:1个酶单位是指在以下分析条件下,于74℃,30min内使10nmmol的dNTP掺入酸不溶性成分所需的酶。测定时间为10min,折算成30min掺入量。分析条件为25nmol/L TAPS(三羟基-甲基-氨基丙烷磺酸钠pH9.3.25℃),50mmol/l KCl,2mmol/L MgCl2.1mmol/L β-ME(巯基乙醇),dATP、dTTP、dGTP各200mmol/L,dCTP为100mmol/L(由不标记及α-32P标记混合),12.μg变性鲱鱼精子DNA,最终体积50μl。 单、双链DNA或RNA都可以作为PCR的样品。若起始材料是RNA,须先通过逆转录得到第一条cDNA。虽然PCR可以仅用极微量的样品,甚至是来自单一细胞的DNA,但为了保证反应的特异性,还应用ng级的克隆DNA,μg水平的单拷贝染色体DNA或104拷贝的待扩增片段作为起始材料,模板可以是粗品,但不能混有任何蛋白酶、核酸酶、Taq DNA聚合酶抑制剂以及能结合DNA的蛋白。DNA的大小并不是关键的因素,但当使用极高分子量的DNA(如基因组的DNA时),如用超声处理或用切点罕见的限制酶(如Sal1和Not1)先行消化,则扩增效果更好。闭环靶序列DNA的扩增效率略低于线状DNA,因此,用质粒作反应模板时最好先将其线状化。模板靶序列的浓度因情况而异,往往非实验人员所控制,实验可按已知靶序列量逆减的方式(1ng,0.1ng,0.001ng等),设置一组对照反应,以检测扩增反应的灵敏度是否符合要求。 在实际工作中常采用琼脂糖凝胶电泳。一般情况下先在电泳缓冲液或凝胶中加1%溴化乙锭(EB)(每100ml加100μl),然后将已经制备好的1%~2%琼脂糖凝胶(用电泳缓冲液配制)放入电泳槽内,加入待测样品10μl,同时用分子量标准品作标记。琼脂糖浓度应按分离DNA片段的大小进行选择,一般用1.5%~2%,电泳电压75V,待样品进行凝胶内距胶末端1cm时,切断电源,取出凝胶在紫外灯下直接观察结果。由于溴化乙锭可与双链DNA形成结合物,在紫外灯下能发射荧光,使EB的荧光强度增强80~100倍,所以,电泳后凝胶在紫外灯下可直接观察。一般肉眼观察DNA量可达10ng,其荧光强度与DNA含量成正比。DNA分子在凝胶中泳动速度决定于电荷效应及分子效应。前者由所带净电荷量决定,而后者与分子大小及构型有关。按照DNA分子大小,其凝胶浓度可做不同的调整。有条件的实验室也可用聚丙烯酰胺凝胶电泳(PAGE)分析扩增的DNA片段。 PCR技术必须有人工合成的合理引物和提取的样品DNA,然后才进行自动热循环,最后进行产物鉴定与分析。引物设计与合成目前只能在少数技术力量较强的研究院、所进行,临床应用只需购买PCR检测试剂盒就可开展工作,PCR自动热循环中影响因素很多,对不同的DNA样品,PCR反应中各种成份加入量和温度循环参数均不一致。现将几种主要影响因素介绍如下。一、温度循环参数在PCR自动热循环中,最关键的因素是变性与退火的温度。如操作范例所示,其变性、退火、延伸的条件是:94℃60s, 37℃60s, 72℃120s,共25~30个循环,扩增片段500bp。在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算。在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测。关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的。下面就各种温度的选择作一介绍。1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动。变性温度低则变性不完全,DNA双链会很快复性,因而减少产量。一般取90~95℃。样品一旦到达此温度宜迅速冷却到退火温度。DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持Taq DNA聚合酶的活力,加入Taq DNA聚合酶后最高变性温度不宜超过95℃。2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G C)%含量进行推测,把握试验的起始点,一般试验中退火温度比扩增引物的融解温度TTm低5℃,可按公式进行计算:Ta = Tm -5℃= 4(G C) 2(A T)-5℃其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要。3.引物延伸温度温度的选择取决于Taq DNA聚合酶的最适温度。一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒。每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质。扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因Taq DNA聚合酶在退火温度下足以完成短序列的合成。对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的。此时,引物延伸温度与退火温度相同。对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使Taq DNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段。4.循环次数常规PCR一般为25~40个周期。一般的错误是循环次数过多,非特异性背景严重,复杂度增加。当然循环反应的次数太少,则产率偏低。所以,在保证产物得率前提下,应尽量减少循环次数。扩增结束后,样品冷却并置4℃保存。二、引物引物设计要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5"端决定扩增产物的两个5"末端位置。由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要。引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括:1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次。因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸。这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体。有时可在5"端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5"端生物素标记或荧光标记可用于微生物检测等各种目的。有时引物不起作用,理由不明,可移动位置来解决。2.(G C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体。两个引物中(G C)%含量应尽量相似,在已知扩增片段(G C)%含量时宜接近于待扩增片段,一般以40%~60%为佳。3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpinstructures)。例如:4.引物之间两个引物之间不应发生互补,特别是在引物3"端,即使无法避免,其3"端互补碱基也不应大于2个碱基,否则易生成“引物二聚体”或“引物二倍体”(Primer dimer)。所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物。另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列。否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加。5.引物3"端配对DNA聚合酶是在引物3"端添加单核苷酸,所以,引物3"端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增。引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定。人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质。纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年。三、DNA聚合酶在1956年Kornberg等就从大肠杆菌提取液中发现了DNA聚合酶,并且得到了DNA聚合酶Ⅰ纯品。DNA聚合酶Ⅰ是由分子量为109000的一条多肽链构成,此酶可被枯草杆菌蛋白酶分解为两个片段,一个片段分子量为76000,有聚合酶活性,并有3"→5外切酶活力,即Klenow片段(Klenow fragment)。另一个片段分子量为34000,具有5"→"3"外切酶活力。因此,DNA聚合酶具有几种功能:一是聚合作用,以DNA为模板,将dNTP中的脱氧单核苷酸逐个加到3-OH末端。二是有"3"→5"外切酶活力,能识别和消除错配的引物末端,与复制过程中校正功能有关。三是5"→3"外切酶活力,它能从5"端水解核苷酸,还能经过几个核苷酸起作用,切除错配的核苷酸。1985年Mullis 等发明了PCR方法,以Klenow片段完成β-珠蛋白的PCR后,世界上许多实验室就考虑用耐热DNA聚合酶代替Klenow片段进行PCR,使耐热多聚酶的研究得以迅速发展。人们从生活于60℃(B.Stearothermophilus)到87℃(S.Solfatavicus)的许多菌中分离纯化出耐热DNA聚合酶,但有些酶不能耐受DNA变性所需温度,所以无法应用于PCR。1.Taq DNA聚合酶用Taq DNA聚合酶代替大肠杆菌DNA聚合酶Ⅰ的Klenow片段是使PCR普及应用的关键。Klenow片段不能耐受95℃的双链DNA变性温度,所以每次循环都要加入新酶;而Taq DNA聚合酶可以耐受93~95℃的高温,避免了不断补加多聚酶的繁琐操作,同时使退火和延伸温度得以提高,减少了非特异性产物和DNA二级结构对PCR的干扰,增进了PCR特异性、产量和敏感度,二者相比,其主要区别在于:①Klenow酶的最适温度为37℃,扩增的产物并非全是目的序列,需用探针检测。Taq酶则不仅产率高而特异性也高。它的最适温度为74~75℃。因而使退火温度可以提高,使退火严格性提高,减少错配引物的延伸。②循环后期酶量渐感不足而产生平坡。到达平玻的循环次数,Klenow酶为20个(均用1μg基因组DNA开始)而Taq酶为30个。③延伸片段长度Taq酶为10kb以内,而Klenow酶为400bp以内。Taq酶由水栖高温菌(Thermusaquatics)YT1蓖株中分离而得。此菌于1969年由Brock分离自美国黄石公园温泉,作为栖热杆菌的标准菌株,其生长温度为70~75℃。最初从中分离到分子量60~68KDa,比活性为2000~8000U/mg的DNA聚合酶。后来Cetus公司的Kary Mullis等又分离到比活为20万U/mg的纯酶,分子量为93910。此种9.4KDa酶的最适温度为75~80℃,与单纯核苷酸的结合率(Kcat)可达150核苷酸(nt)/s酶分子。以M13模板,用富含G C的30bp引物延伸,70℃时Kact>60nt/s;55℃可达24nt/s;37℃时为1.5nt/s,而22℃时低至0.25nt/s。高于90℃时DNA合成活性甚差,这种高温条件下,引物与模板已不能牢固结合。在PCR反应混合液中,Taq酶于92.5℃,95℃及97.5℃保持其50%活力的时间分别为130、40及5~6min,在50次循环的PCR中当管内最高温度为95℃。每循环为20s时尚可保持65%活力。Taq 酶在95℃的半寿期为40min,故在PCR循环中选用的变性温度,不宜高于95℃。Taq酶现已可用基因重组的方法生产,商品名为Ampli Taq(Cetus公司)。Taq酶的完整基因长2499bp,在大肠杆菌中表达生产,含832个氨基酸。在氨基酸序列上与大肠杆菌DNA聚合酶Ⅰ有38%是一致的,包括对dNTP结合,引物与模板作用区均存在于Taq酶中。Taq酶具有依赖DNA合成的5"→"3"外切酶活性,因此,模板上有一段退火的3"-磷酸化的“阻断物”,会被逐个切除而不会阻止来自上游引物链的延伸,而对于5"-32P标记的合成寡核苷酸引物,则无论是单链或是与模板复性,都未发现降解,所以该种活性不会影响PCR结果。Taq酶没有3"→"5"外切酶活性,如果发生dNTP错误掺入,这种酶没有校正能力,因此运用Taq酶进行PCR,产物中点突变较多,对克隆等不太有利。一般错掺率为1.25×10-4~1×10-5(4×dNTPs浓度分别为200μmol/L,Mg2 为1.5mmol/L,在55℃退火)。但不含3"→5"外切酶活性对测序有利。2.影响酶活力的因素Taq酶的活力受Mg2 离子的影响。用鲱精DNA为模板,总dNTP浓度0.7~0.8mmol/L,Mg2 为2.0mmol/L时激活能力最高。浓度超过此值产生抑制。10mmol/l MgCl2抑制活力达40%~50%。dNTP能与Mg2 结合,故游离Mg2 只是结合后剩余的量。若总dNTP浓度高至4~6mmol/L时,Taq酶活力要降低20~30%,即底物抑制。dNTP浓度低时PCR产率及特异性均增高,适合于用扩增掺入法标记生物素及放射性元素。当100μl PCR液中含dNTP各40μmol/L时就足以合成2.6μg的DNA(dNTP消耗一半)。用鲱精DNA,70℃,10min内dNTP的掺入量计算,标准条件为100%。纯9.4KDa Taq酶不含3"→5"核酸外切酶活力。误掺入率取决于dNTP浓度。但Taq酶具有DNA依赖的链移位5"→3"核酸外切酶活力。对5"→3"32P标记寡核苷酸单链,或与MB模板杂交时均只有极少的降解力。中等浓度KCl能刺激Taq酶合成活力达50%~60%,最佳KCl浓度为50mmol/L,浓度更高有抑制作用,>200mmol/L的KCl可使酶失活。加入50mmol/L NH4Cl或NH4Ac或NaCl,可产生中度抑制或无作用。低浓度尿素、DMSO、DMF或甲酰胺影响不大,吐温20/NP40可消除SDS(0.01%及0.1%)的抑制作用。3.第二代耐热DNA聚合酶Stoffel片段:Cetus公司的Stoffel将TaqDNA聚合酶的5"→3"外切酶活性片段(N端289个氨基酸)去除,称为stoffel片段。其97.5℃的半衰期从Taq DNA聚合酶的5~6min提高到20min,同时该酶片段也对两个或更多模板位点的扩增反应即复合PCR(Multiplex PCR)更为有利。VentTMDNA多聚酶:是美国New England Biolabs公司从潜水艇排气孔(Vent)中分离的超级嗜热菌-能生长于98℃中的Thermococcus litoralis中分离纯化得到的,故名Vent酶。它的一些酶学性质较Taq DNA聚合酶更为优越,它能耐100℃高温且2h以上仍有活力,并且具有3"→5"外切酶活性的校正能力,错误扩增的机率比Taq酶降低一倍。后来该公司又从深水潜艇(2010m)排气孔分离的能在104℃生长的Pyococcus菌GB-D株植入Deep Vent DNA聚合酶基因而表达的Deep Vent DNA聚合酶,在95℃的半寿期达23h(Vent酶为6.7h,Taq酶为1h)。4.RTth逆转录酶(rTth Reverse Transcriptase)目前逆转录-PCR(RT-PCR)的发展很快,所以对耐热的依赖于RNA的DNA多聚酶的研究也有进展。有实验表明Taq DNA多聚酶有依赖于RNA的DNA聚合酶活性,但活性较弱。Cetus公司于1991年推出一种rTth Reverse Tran-scriptase,有很好的依赖于RNA的耐热DNA聚合酶活性和依赖于DNA的耐热DNA聚合酶活性,二种活性分别依赖于Mn2 Mg2 ,这样就可分别控制酶活性。利用该酶只需250ng的总RNA即可有效地进行RT-PCR,得到特异的DNA片段,从而非常有利于逆转录PCR的发展。耐热DNA聚合酶的研究得到长足的发展,这在PCR发展中起到了重要的作用。相信随着进一步的研究,将使人们对耐热DNA聚合酶的认识和应用更进一步地发展。我国的PCR研究发展很快,其关键试剂-耐热DNA聚合酶-也已有几个实验室能够分离纯化,如复旦大学遗传学研究所、华美公司、中国医学科学院基础医学研究所。后二者的菌株为Thermus aquaticus YT-1。前者则是从自己筛选的嗜热菌中分离纯化,复旦大学遗传所亦已成功地克隆了该聚合酶的基因并获得了耐热F4DNA聚合酶,其酶学性质非常接近于Taq DNA聚合酶,为中国PCR的开展提供了保证。四、影响PCR特异性的因素通过上述内容。可以看出有许多因素可以影响PCR的特异性,在此我们作一归纳,供大家参考:①退火步骤的严格性:提高退火温度可以减少不匹配的杂交,从而提高特异性。②减短退火时间及延伸时间可以减少错误引发及错误延伸。③引物二聚体是最常见的副产品,降低引物及酶的浓度也可以减少错误引发,尤其是引物的二聚化。④改变MgCl2(有时KCl)浓度可以改进特异性,这可能是提高反应严格性或者对Taq酶的直接作用。⑤模板中如果存在次级结构,例如待扩增的片段易自行形成发夹结构时,可在PCR混合物中的4×dNTPs中加入7-脱氮-2"-脱氧鸟苷-5"-三磷酸(7-deaza-2"-deoxyguanosine-5"-trihosphate)(de7GTP)。用de7GTP与dGTP比例为3:1的混合物(150μmol/l de7GTP 50μmol/L dGTP)代替200μmol/l dGTP,则可阻非特异性产物的生成。五、扩增平坡扩增反应并不是可以无穷地进行下去的,经过一定的循环周期后需扩增的片段不再按指数增多而逐渐进入平坡;进入平坡的循环次数,取决于起始时存在的模板拷贝数以及合成的DNA总量。所谓平坡就是批PCR循环的后期,合成产物达0.3~1pmol时,由于产物的堆积,使原来以指数增加的速率变成平坦的曲线。造成PCR进入平坡的原因有:引物和dNTP等消耗完毕、Taq酶失活,这几中因素在标准反应中均不会出现。此外,还有几种可能:1.底物过剩因DNA合成量多于反应液中存在的Taq酶,在100μl反应液中含2.5Utaq酶而DNA合成量达1μg(3nmol脱氧核苷酸)时,开始变为底物过剩。延长延伸时间或添加Taq酶,可以克服之。但不实用,因每进行下一循环就要延长延伸时间一倍及多加一倍Taq酶,才能继续保持指数增长。2.非特异性扩增产物的竞争与上述情况密切相关,此时不需要的DNA片段与需要的片段同时竞争聚合酶,要克服这一情况是要提高反应特异性,使不需要片段不能大量积聚。3.退火时产物的单链自己缔合两条单链的DNA片段在退火时除了与引物缔合外,也可以自行缔合,这也会阻止产品增多。当产物浓度到达10pmol/100μl时即可发生此现象,除稀释外无法克服。4.变性在高浓度产物条件下,产物解链不完全,以及最终产物的阻化作用(焦磷酸化,双链DNA)。总而言之,PCR的条件是随系统的而异的,并无统一的最佳条件,先选用通用的条件扩增,然后稍稍改变各参数,可以达到优化,以取得优良的特异性和产率。
2023-06-27 17:29:341

基因测序的步骤是什么?

PCR产物直接测序技术现已成为分子生物学和基因组学研究中的一个重要技术,广泛用于基因突变检测、遗传性疾病诊断、单核苷酸多态性研究、基因组重叠序列群等.与传统克隆测序技术相比较,直接对PCR扩增的DNA进行测序,省去了耗时的克隆步骤,避免了传统的细菌培养,模板提取等重复性操作,可以从少量的原始样品中得到正确的DNA序列信息.PCR产物直接测序技术具有快速、简便、稳定经济的优点. 试验试剂 PCR扩增的双链DNA模板 长约20个核苷酸的DNA引物 DNA聚合酶 测序胶 0.1mol/L DDT α-32P-dATP dNTP/ddNTP混合物(80μmol/L/8μmol/L) dNTP(dCTP、dGTP 、dTTP 各0.75μmol/L) 测序反应缓冲液:40mmol/L Tris-HCl(pH7.5),20mmol/L MgCl2,50mmol/L NaCl 终止缓冲液:95% 甲酰胺,20mmol/L EDTA,0.05% 溴酚蓝,0.05% 二甲苯腈 试验步骤: 1、 4个微量离心管中各加入dNTP/ddNTP混合物2.5μl,混合物37OC温浴5min,备用. 2、 在一个空的微量离心管中加入1pmol的PCR扩增双链DNA,10pmol测序引物,2μl 5×测序缓冲液,加双蒸水至总体积10μl,96OC加热8min,冰浴泠却1min,4OC 10000g离心10s. 3、 加入2μl预冷的标记混合物(dCTP、dGTP 、dTTP 各0.75μmol/L),α-32P-dATP 5μCi,1μl 0.1mol/L DDT,测序酶2U,加水至15μl,混匀后置冰上2min,标记新合成的DNA链. 4、 在第1步骤的4个管中各加入3.5μl标记反应混合物,37OC温浴5min.每管各加入4μl终止液. 5、 样品在80OC的水浴中热变性5min,每一泳道加2μl 加到测序胶上,电泳分离这些片段. 注意事项: 1.?PCR产物要有一定的长度(>200bp),因为测序结果两端20-30bp的电泳峰图的准确性较低. 2.?纯化PCR产物可通过离子交换层析使扩增的DNA段与反应剩余的dNTP及引物分离;也可通过琼脂糖凝胶电泳,将PCR产物与非特异性扩增产物和引物分离开来;如果扩增的特异性较高时,可直接通过酚:氯仿抽提,乙醇沉淀的方法来纯化. 3.?测序引物设计原则类似于PCR引物设计,可在DNA合成仪上合成20个左右的核苷酸作为引物,经过高压液相层析或聚丙烯酰胺凝胶电泳纯化后,即可用作测序引物. PCR循环测序法 PCR循环测序法是将PCR扩增和核酸序列分析技术相结合,从而形成的一种测定核苷酸序列的研究方法,也称作线性扩增测序.该方法采用PCR仪加热使DNA模板变性,在TaqDNA聚合酶作用下,以温度循环模式在模板上进行多轮的双脱氧核苷酸测序反应,线性扩增标记的DNA分子. PCR循环测序法与以往的测序方法相比,其优点在于:大大减少所需的模板量;能提高测序反应产生的信号,降低了操作的复杂性,且聚合酶的用量减少;可在小量制备的模板上进行筛选反应;高温下进行的测序反应使DNA聚合酶催化的聚合反应能够通过模板二级结构的区域;双链闭环DNA可以直接作为反应模板应用,不用作预先碱变性处理.由于PCR循环测序法能够简单、快速地检测特定序列,因此, PCR循环测序法在核酸序列分析研究中受到广泛的重视. 试验试剂: DNA测序试剂盒 dNTP ddNTP 丙烯酰胺 双丙烯酰胺 尿素 TEMED(N,N,N‘,N"-四甲基乙二胺) 过硫酸铵 6%测序胶:6%丙烯酰胺,7mmol/L 尿素,1×TBE. 10×测序缓冲液:100mmol/L Tris-HCl(pH8.8),500mmol/L KCl,40mmol/L MgCl2,0.01%明胶,20μmol/L dATP,50μmol/L dCTP,50μmol/L dGTP,50μmol/L dTTP 终止混合液:ddATP (600μmol/L),ddCTP (600μmol/L),ddGTP (100μmol/L),ddTTP(1000μmol/L) 终止缓冲液:95%甲酰胺,20mmol/L EDTA,0.05%溴酚蓝,0.05%二甲苯腈 试验步骤 1、 4个小离心管,每个小管加入3μl的终止混合液,将管子放在冰上. 2、 在DNA模板中加入引物(4pmol), 4μl 10×测序缓冲液, 10μlα-32P-dATP, 2U TaqDNA聚合酶,加双蒸水到30μl彻底混匀,每管7μl加入上面4个小管中. 3、 反应液上加30μl的石蜡油. 4、 95OC 30S,50OC 30S,72OC 60S共30个循环,可根据具体的情况进行适当的调整循环条件及循环次数. 5、 反应结束后在油层下加入5μl的终止缓冲液并用加样枪混匀. 6、 上样前将样品在大于80OC的水浴中热变性5min,每一道加2μl加到测序胶上,电泳分离这些片段. 注意事项: 1、 制备测序模板:PCR 扩增的产物可以经过低熔点的琼脂糖凝胶电泳纯化回收后,用于序列分析;可经过柱层析纯化,去除PCR 反应后剩余的dNTP和引物后,用于序列分析.PCR 产物也可不经纯化直接用于测序,但是这种测序产生的结果较差,建议测序之前应进行PCR产物的纯化.各种标准的质粒制备方法所纯化出的质粒均可作为测序模板使用.用标准方法制备的M13噬菌体、粘粒、λDNA都适合用作测序模板用.但要注意的是反应体系中不应有与引物互补的非目的基因序列,否则将会导致测序实验的失败. 2、 测序引物:测序引物是指合成的与测序模板链特异性互补的寡核苷酸序列.可用α-32P-dATP和T4多聚核苷酸激酶对引物的5‘端进行标记,反应体系中引物、激酶和α-32P-dATP要保持在最佳的比例,以得到高比活性的标记引物;也可用α-32P-dATP标记新合成的DNA链.引物的浓度不宜高,否则容易形成引物二聚体,或产生非特异性的扩增引物. 3、 酶:各种缺乏3‘—5‘端外切活性的耐热DNA聚合酶都可以用于循环测序,其中TaqDNA聚合酶在DNA测序中最为常用.虽然应用PCR循环测序法能够简单、快速的进行基因序列的测定,但仍未能适应大规模DNA序列测定的需要,而PCR循环测序法、荧光标记和自动测序仪的联合使用成为大规模基因组测序的主要技术.该技术是采用荧光标记引物或双脱氧核苷三磷酸,反应产物经聚丙烯酰胺凝胶电泳后,经特定的DNA序列分析仪和分析系统处理待测的DNA序列.它的应用减轻了DNA序列测定的工作量,提高了测序的效率.
2023-06-27 17:29:501

聚合酶链反应的反应体系

PCR基本原理示意图(如右图):在一个典型的PCR反应体系中需加入:适宜的缓冲液、微量的模板DNA、4×dNTPs、耐热性多聚酶、Mg2 和两个合成的DNA引物。模板DNa 94℃变性1min,引物与模板40~60℃退火1min,72℃延伸2min。在首次循环前模板预变性3~5min;在末次循环后,样品仍需继续延伸3~5min以上,确保扩增的DNA为双链DNA。为便于了解PCR反应中各成份的组成,加入量和反应条件,使人们以此为基础,对不同的研究对象逐项改变来找到最佳反应条件,特列举Perkin Elmer Cetus公司Gene Amp DNA试剂盒提供的典型反应条件供参考。 用于PCR的标准缓冲液见PCR操作范例。于72℃时,反应体系的pH值将下降1个单位,接近于7.2。二价阳离子的存在至关重要,影响PCR的特异性和产量。实验表明,Mg2 优于Mn2 ,而Ca2 无任何作用。1.Mg2 浓度Mg2 的最佳浓度为1.5mmol/L(当各种dNTP浓度为200mmol/L时),但并非对任何一种模板与引物的结合都是最佳的。首次使用靶序列和引物结合时,都要把Mg2 浓度调到最佳,其浓度变化范围为1~10mmol/L。Mg2 过量易生成非特异性扩增产物,Mg2 不足易使产量降低。样品中存在的较高浓度的螯合剂如EDTA或高浓度带负电荷的离子基团如磷酸根,会与Mg2 结合而降低Mg2 有效浓度。因此,用作模板的DNA应溶于10mmol/l Tris-HCl(pH7.6)0.1mmol/L EDTA中。dNTP含有磷酸根,其浓度变化将影响Mg2 的有效浓度。标准反应体系中4×dTNPs的总浓度为0.8mmol/L,低于1.5mmol/L的Mg2 浓度。因此,在高浓度DNA及dNTP条件时,必须相应调整Mg2 的浓度。2.Tris -HCl缓冲液在PCR中使用10~50mmol/L的Tris –HCl缓冲液,很少使用其他类型的缓冲液。Tris缓冲液是一种双极化的离子缓冲液,pKa为8.3(20℃),△pKa为0.021/℃。因此,20mmol/l Tris pH8.3(20℃)时,在典型的热循环条件下,真正的pH值在7.8~6.8之间。3.KCl浓度K 浓度在50mmol/L 时能促进引物退火。但研究表明,NaCl浓度在50mmol/L时,KCl浓度高于50mmol/L将会抑制Taq酶的活性,少加或不加KCl对PCR结果没有太大影响。4.明胶明胶和BSA或非离子型去垢剂具有稳定酶的作用。一般用量为100μg/ml,但现在的研究表明,加或不加都能得到良好和PCR结果,影响不大。5.二甲基亚砜(DMSO)在使用Klenow片段进行PCR时DMSO是有用的;加入10%DM-SO有利于减少DNA的二级结构,使(G C)%含量高的模板易于完全变性,在反应体系中加入DMSO使PCR产物直接测序更易进行,但超过10%时会抑制Taq DNA聚合酶的活性,因此,大多数并不使用DMSO。 在PCR反体系中dNTP终浓度高于50mmol/L会抑制Taq酶的活性,使用低浓度dNTP可以减少在非靶位置启动和延伸时核苷酸错误掺入,高浓度dNTPs易产生错误掺入,而浓度太低,势必降低反应物的产量。PCR常用的浓度为50~200μmol/L,不能低于10~15μmol/L。四种dNTP的浓度应相同,其中任何一种浓度偏高或偏低,都会诱导聚合酶的错误掺入,降低合成速度,过早终止反应。决定最低dNTP浓度的因素是靶序列DNA的长度和组成,例如,在100μl反应体系中,4×dNTPs浓度若用20μmol/L,基本满足合成2.6μg DNA或10pmol的400bp序列。50μmol/L的4×dNTPs可以合成6.6μgDNA,而200μmol/L足以合成25μg/DNA。购自厂商的dNTP溶液一般均未调pH,应用1mol/l NaOH将dNTP贮存液pH调至7.0,以保证反应的pH值不低于7.1。市购的游离核苷酸冻干粉,溶解后要用NaOH中和,再用紫外分光光度计定量。 典型PCR反应混合物中,所用酶浓度为2.5U/μl,常用范围为1~4U/100μl。由于DNA模板的不同和引物不同,以及其它条件的差异,多聚酶的用量亦有差异,酶量过多会导致非特异产物的增加。由于生产厂家所用兵配方、制造条件以及活性定义不同,不同厂商供应的TaqDNA聚合酶性能也有所不同。Cetus公司酶定义是:1个酶单位是指在以下分析条件下,于74℃,30min内使10nmmol的dNTP掺入酸不溶性成分所需的酶。测定时间为10min,折算成30min掺入量。分析条件为25nmol/L TAPS(三羟基-甲基-氨基丙烷磺酸钠pH9.3.25℃),50mmol/l KCl,2mmol/L MgCl2.1mmol/L β-ME(巯基乙醇),dATP、dTTP、dGTP各200mmol/L,dCTP为100mmol/L(由不标记及α-32P标记混合),12.μg变性鲱鱼精子DNA,最终体积50μl。 单、双链DNA或RNA都可以作为PCR的样品。若起始材料是RNA,须先通过逆转录得到第一条cDNA。虽然PCR可以仅用极微量的样品,甚至是来自单一细胞的DNA,但为了保证反应的特异性,还应用ng级的克隆DNA,μg水平的单拷贝染色体DNA或104拷贝的待扩增片段作为起始材料,模板可以是粗品,但不能混有任何蛋白酶、核酸酶、Taq DNA聚合酶抑制剂以及能结合DNA的蛋白。DNA的大小并不是关键的因素,但当使用极高分子量的DNA(如基因组的DNA时),如用超声处理或用切点罕见的限制酶(如Sal1和Not1)先行消化,则扩增效果更好。闭环靶序列DNA的扩增效率略低于线状DNA,因此,用质粒作反应模板时最好先将其线状化。模板靶序列的浓度因情况而异,往往非实验人员所控制,实验可按已知靶序列量逆减的方式(1ng,0.1ng,0.001ng等),设置一组对照反应,以检测扩增反应的灵敏度是否符合要求。 在实际工作中常采用琼脂糖凝胶电泳。一般情况下先在电泳缓冲液或凝胶中加1%溴化乙锭(EB)(每100ml加100μl),然后将已经制备好的1%~2%琼脂糖凝胶(用电泳缓冲液配制)放入电泳槽内,加入待测样品10μl,同时用分子量标准品作标记。琼脂糖浓度应按分离DNA片段的大小进行选择,一般用1.5%~2%,电泳电压75V,待样品进行凝胶内距胶末端1cm时,切断电源,取出凝胶在紫外灯下直接观察结果。由于溴化乙锭可与双链DNA形成结合物,在紫外灯下能发射荧光,使EB的荧光强度增强80~100倍,所以,电泳后凝胶在紫外灯下可直接观察。一般肉眼观察DNA量可达10ng,其荧光强度与DNA含量成正比。DNA分子在凝胶中泳动速度决定于电荷效应及分子效应。前者由所带净电荷量决定,而后者与分子大小及构型有关。按照DNA分子大小,其凝胶浓度可做不同的调整。有条件的实验室也可用聚丙烯酰胺凝胶电泳(PAGE)分析扩增的DNA片段。 PCR技术必须有人工合成的合理引物和提取的样品DNA,然后才进行自动热循环,最后进行产物鉴定与分析。引物设计与合成目前只能在少数技术力量较强的研究院、所进行,临床应用只需购买PCR检测试剂盒就可开展工作,PCR自动热循环中影响因素很多,对不同的DNA样品,PCR反应中各种成份加入量和温度循环参数均不一致。现将几种主要影响因素介绍如下。一、温度循环参数在PCR自动热循环中,最关键的因素是变性与退火的温度。如操作范例所示,其变性、退火、延伸的条件是:94℃60s, 37℃60s, 72℃120s,共25~30个循环,扩增片段500bp。在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算。在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测。关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的。下面就各种温度的选择作一介绍。1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动。变性温度低则变性不完全,DNA双链会很快复性,因而减少产量。一般取90~95℃。样品一旦到达此温度宜迅速冷却到退火温度。DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持Taq DNA聚合酶的活力,加入Taq DNA聚合酶后最高变性温度不宜超过95℃。2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。也可根据引物的(G C)%含量进行推测,把握试验的起始点,一般试验中退火温度比扩增引物的融解温度TTm低5℃,可按公式进行计算:Ta = Tm -5℃= 4(G C) 2(A T)-5℃其中A,T,G,C分别表示相应碱基的个数。例如,20个碱基的引物,如果(G C)%含量为50%时,则Ta的起点可设在55℃。在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要。3.引物延伸温度温度的选择取决于Taq DNA聚合酶的最适温度。一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒。每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质。扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因Taq DNA聚合酶在退火温度下足以完成短序列的合成。对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的。此时,引物延伸温度与退火温度相同。对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使Taq DNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段。4.循环次数常规PCR一般为25~40个周期。一般的错误是循环次数过多,非特异性背景严重,复杂度增加。当然循环反应的次数太少,则产率偏低。所以,在保证产物得率前提下,应尽量减少循环次数。扩增结束后,样品冷却并置4℃保存。二、引物引物设计要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5"端决定扩增产物的两个5"末端位置。由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要。引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括:1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次。因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸。这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体。有时可在5"端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5"端生物素标记或荧光标记可用于微生物检测等各种目的。有时引物不起作用,理由不明,可移动位置来解决。2.(G C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体。两个引物中(G C)%含量应尽量相似,在已知扩增片段(G C)%含量时宜接近于待扩增片段,一般以40%~60%为佳。3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpinstructures)。例如:4.引物之间两个引物之间不应发生互补,特别是在引物3"端,即使无法避免,其3"端互补碱基也不应大于2个碱基,否则易生成“引物二聚体”或“引物二倍体”(Primer dimer)。所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物。另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列。否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加。5.引物3"端配对DNA聚合酶是在引物3"端添加单核苷酸,所以,引物3"端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增。引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定。人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质。纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年。三、DNA聚合酶在1956年Kornberg等就从大肠杆菌提取液中发现了DNA聚合酶,并且得到了DNA聚合酶Ⅰ纯品。DNA聚合酶Ⅰ是由分子量为109000的一条多肽链构成,此酶可被枯草杆菌蛋白酶分解为两个片段,一个片段分子量为76000,有聚合酶活性,并有3"→5外切酶活力,即Klenow片段(Klenow fragment)。另一个片段分子量为34000,具有5"→"3"外切酶活力。因此,DNA聚合酶具有几种功能:一是聚合作用,以DNA为模板,将dNTP中的脱氧单核苷酸逐个加到3-OH末端。二是有"3"→5"外切酶活力,能识别和消除错配的引物末端,与复制过程中校正功能有关。三是5"→3"外切酶活力,它能从5"端水解核苷酸,还能经过几个核苷酸起作用,切除错配的核苷酸。1985年Mullis 等发明了PCR方法,以Klenow片段完成β-珠蛋白的PCR后,世界上许多实验室就考虑用耐热DNA聚合酶代替Klenow片段进行PCR,使耐热多聚酶的研究得以迅速发展。人们从生活于60℃(B.Stearothermophilus)到87℃(S.Solfatavicus)的许多菌中分离纯化出耐热DNA聚合酶,但有些酶不能耐受DNA变性所需温度,所以无法应用于PCR。1.Taq DNA聚合酶用Taq DNA聚合酶代替大肠杆菌DNA聚合酶Ⅰ的Klenow片段是使PCR普及应用的关键。Klenow片段不能耐受95℃的双链DNA变性温度,所以每次循环都要加入新酶;而Taq DNA聚合酶可以耐受93~95℃的高温,避免了不断补加多聚酶的繁琐操作,同时使退火和延伸温度得以提高,减少了非特异性产物和DNA二级结构对PCR的干扰,增进了PCR特异性、产量和敏感度,二者相比,其主要区别在于:①Klenow酶的最适温度为37℃,扩增的产物并非全是目的序列,需用探针检测。Taq酶则不仅产率高而特异性也高。它的最适温度为74~75℃。因而使退火温度可以提高,使退火严格性提高,减少错配引物的延伸。②循环后期酶量渐感不足而产生平坡。到达平玻的循环次数,Klenow酶为20个(均用1μg基因组DNA开始)而Taq酶为30个。③延伸片段长度Taq酶为10kb以内,而Klenow酶为400bp以内。Taq酶由水栖高温菌(Thermusaquatics)YT1蓖株中分离而得。此菌于1969年由Brock分离自美国黄石公园温泉,作为栖热杆菌的标准菌株,其生长温度为70~75℃。最初从中分离到分子量60~68KDa,比活性为2000~8000U/mg的DNA聚合酶。后来Cetus公司的Kary Mullis等又分离到比活为20万U/mg的纯酶,分子量为93910。此种9.4KDa酶的最适温度为75~80℃,与单纯核苷酸的结合率(Kcat)可达150核苷酸(nt)/s酶分子。以M13模板,用富含G C的30bp引物延伸,70℃时Kact>60nt/s;55℃可达24nt/s;37℃时为1.5nt/s,而22℃时低至0.25nt/s。高于90℃时DNA合成活性甚差,这种高温条件下,引物与模板已不能牢固结合。在PCR反应混合液中,Taq酶于92.5℃,95℃及97.5℃保持其50%活力的时间分别为130、40及5~6min,在50次循环的PCR中当管内最高温度为95℃。每循环为20s时尚可保持65%活力。Taq 酶在95℃的半寿期为40min,故在PCR循环中选用的变性温度,不宜高于95℃。Taq酶现已可用基因重组的方法生产,商品名为Ampli Taq(Cetus公司)。Taq酶的完整基因长2499bp,在大肠杆菌中表达生产,含832个氨基酸。在氨基酸序列上与大肠杆菌DNA聚合酶Ⅰ有38%是一致的,包括对dNTP结合,引物与模板作用区均存在于Taq酶中。Taq酶具有依赖DNA合成的5"→"3"外切酶活性,因此,模板上有一段退火的3"-磷酸化的“阻断物”,会被逐个切除而不会阻止来自上游引物链的延伸,而对于5"-32P标记的合成寡核苷酸引物,则无论是单链或是与模板复性,都未发现降解,所以该种活性不会影响PCR结果。Taq酶没有3"→"5"外切酶活性,如果发生dNTP错误掺入,这种酶没有校正能力,因此运用Taq酶进行PCR,产物中点突变较多,对克隆等不太有利。一般错掺率为1.25×10-4~1×10-5(4×dNTPs浓度分别为200μmol/L,Mg2 为1.5mmol/L,在55℃退火)。但不含3"→5"外切酶活性对测序有利。2.影响酶活力的因素Taq酶的活力受Mg2 离子的影响。用鲱精DNA为模板,总dNTP浓度0.7~0.8mmol/L,Mg2 为2.0mmol/L时激活能力最高。浓度超过此值产生抑制。10mmol/l MgCl2抑制活力达40%~50%。dNTP能与Mg2 结合,故游离Mg2 只是结合后剩余的量。若总dNTP浓度高至4~6mmol/L时,Taq酶活力要降低20~30%,即底物抑制。dNTP浓度低时PCR产率及特异性均增高,适合于用扩增掺入法标记生物素及放射性元素。当100μl PCR液中含dNTP各40μmol/L时就足以合成2.6μg的DNA(dNTP消耗一半)。用鲱精DNA,70℃,10min内dNTP的掺入量计算,标准条件为100%。纯9.4KDa Taq酶不含3"→5"核酸外切酶活力。误掺入率取决于dNTP浓度。但Taq酶具有DNA依赖的链移位5"→3"核酸外切酶活力。对5"→3"32P标记寡核苷酸单链,或与MB模板杂交时均只有极少的降解力。中等浓度KCl能刺激Taq酶合成活力达50%~60%,最佳KCl浓度为50mmol/L,浓度更高有抑制作用,>200mmol/L的KCl可使酶失活。加入50mmol/L NH4Cl或NH4Ac或NaCl,可产生中度抑制或无作用。低浓度尿素、DMSO、DMF或甲酰胺影响不大,吐温20/NP40可消除SDS(0.01%及0.1%)的抑制作用。3.第二代耐热DNA聚合酶Stoffel片段:Cetus公司的Stoffel将TaqDNA聚合酶的5"→3"外切酶活性片段(N端289个氨基酸)去除,称为stoffel片段。其97.5℃的半衰期从Taq DNA聚合酶的5~6min提高到20min,同时该酶片段也对两个或更多模板位点的扩增反应即复合PCR(Multiplex PCR)更为有利。VentTMDNA多聚酶:是美国New England Biolabs公司从潜水艇排气孔(Vent)中分离的超级嗜热菌-能生长于98℃中的Thermococcus litoralis中分离纯化得到的,故名Vent酶。它的一些酶学性质较Taq DNA聚合酶更为优越,它能耐100℃高温且2h以上仍有活力,并且具有3"→5"外切酶活性的校正能力,错误扩增的机率比Taq酶降低一倍。后来该公司又从深水潜艇(2010m)排气孔分离的能在104℃生长的Pyococcus菌GB-D株植入Deep Vent DNA聚合酶基因而表达的Deep Vent DNA聚合酶,在95℃的半寿期达23h(Vent酶为6.7h,Taq酶为1h)。4.RTth逆转录酶(rTth Reverse Transcriptase)目前逆转录-PCR(RT-PCR)的发展很快,所以对耐热的依赖于RNA的DNA多聚酶的研究也有进展。有实验表明Taq DNA多聚酶有依赖于RNA的DNA聚合酶活性,但活性较弱。Cetus公司于1991年推出一种rTth Reverse Tran-scriptase,有很好的依赖于RNA的耐热DNA聚合酶活性和依赖于DNA的耐热DNA聚合酶活性,二种活性分别依赖于Mn2 Mg2 ,这样就可分别控制酶活性。利用该酶只需250ng的总RNA即可有效地进行RT-PCR,得到特异的DNA片段,从而非常有利于逆转录PCR的发展。耐热DNA聚合酶的研究得到长足的发展,这在PCR发展中起到了重要的作用。相信随着进一步的研究,将使人们对耐热DNA聚合酶的认识和应用更进一步地发展。我国的PCR研究发展很快,其关键试剂-耐热DNA聚合酶-也已有几个实验室能够分离纯化,如复旦大学遗传学研究所、华美公司、中国医学科学院基础医学研究所。后二者的菌株为Thermus aquaticus YT-1。前者则是从自己筛选的嗜热菌中分离纯化,复旦大学遗传所亦已成功地克隆了该聚合酶的基因并获得了耐热F4DNA聚合酶,其酶学性质非常接近于Taq DNA聚合酶,为中国PCR的开展提供了保证。四、影响PCR特异性的因素通过上述内容。可以看出有许多因素可以影响PCR的特异性,在此我们作一归纳,供大家参考:①退火步骤的严格性:提高退火温度可以减少不匹配的杂交,从而提高特异性。②减短退火时间及延伸时间可以减少错误引发及错误延伸。③引物二聚体是最常见的副产品,降低引物及酶的浓度也可以减少错误引发,尤其是引物的二聚化。④改变MgCl2(有时KCl)浓度可以改进特异性,这可能是提高反应严格性或者对Taq酶的直接作用。⑤模板中如果存在次级结构,例如待扩增的片段易自行形成发夹结构时,可在PCR混合物中的4×dNTPs中加入7-脱氮-2"-脱氧鸟苷-5"-三磷酸(7-deaza-2"-deoxyguanosine-5"-trihosphate)(de7GTP)。用de7GTP与dGTP比例为3:1的混合物(150μmol/l de7GTP 50μmol/L dGTP)代替200μmol/l dGTP,则可阻非特异性产物的生成。五、扩增平坡扩增反应并不是可以无穷地进行下去的,经过一定的循环周期后需扩增的片段不再按指数增多而逐渐进入平坡;进入平坡的循环次数,取决于起始时存在的模板拷贝数以及合成的DNA总量。所谓平坡就是批PCR循环的后期,合成产物达0.3~1pmol时,由于产物的堆积,使原来以指数增加的速率变成平坦的曲线。造成PCR进入平坡的原因有:引物和dNTP等消耗完毕、Taq酶失活,这几中因素在标准反应中均不会出现。此外,还有几种可能:1.底物过剩因DNA合成量多于反应液中存在的Taq酶,在100μl反应液中含2.5Utaq酶而DNA合成量达1μg(3nmol脱氧核苷酸)时,开始变为底物过剩。延长延伸时间或添加Taq酶,可以克服之。但不实用,因每进行下一循环就要延长延伸时间一倍及多加一倍Taq酶,才能继续保持指数增长。2.非特异性扩增产物的竞争与上述情况密切相关,此时不需要的DNA片段与需要的片段同时竞争聚合酶,要克服这一情况是要提高反应特异性,使不需要片段不能大量积聚。3.退火时产物的单链自己缔合两条单链的DNA片段在退火时除了与引物缔合外,也可以自行缔合,这也会阻止产品增多。当产物浓度到达10pmol/100μl时即可发生此现象,除稀释外无法克服。4.变性在高浓度产物条件下,产物解链不完全,以及最终产物的阻化作用(焦磷酸化,双链DNA)。总而言之,PCR的条件是随系统的而异的,并无统一的最佳条件,先选用通用的条件扩增,然后稍稍改变各参数,可以达到优化,以取得优良的特异性和产率。
2023-06-27 17:29:591

pcr的关键性技术

退火温度的摸索
2023-06-27 17:30:163