- mlhxueli
-
在SPSS当中,有个因子分析,可以通过因子分析最后得到各个因子在每一个项目上的得分,保存这个得分作为新的变量。然后用新变量再去做回归分析就可以了。
实验设计中的因子变量有哪些
实验设计中的因子变量有定量因子、定性因子、环境因子、不可控因子。实验设计是指一种有计划的研究,包括一系列有意图性的对过程要素进行改变与其效果观测,对这些结果进行统计分析以便确定过程变异之间的关系,从而改变这过程。2023-06-08 01:45:331
统计学中,因子和变量是什么意思,要怎么区分?
因子是影响因变量的主要成分,对因变量的变化起着至关重要的作用变量可能影响因变量,也可能不影响,这需要验证,是不确定的因子和变量的最大区别就是对因变量的影响是否确定2023-06-08 01:45:411
变量等于因子吗
变量不等于因子。因子和变量的最大区别就是对因变量的影响是否确定,变量可以理解为因子的线性组合,因子是影响因变量的主要成分。2023-06-08 01:45:481
如何理解潜在的因子变量?
理解潜在的因子变量如下:因子分析的用处是:因子分析是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。用来确定维度数量,对标体系的维度由主观来做判断。2023-06-08 01:45:551
在进行因子分析时,要求所使用的变量必须是什么变量
信我就拿去,不信我说再多都没用, 83bb.pub 期待你的双手把握捧走2023-06-08 01:46:023
因子分析步骤
问题一:因子分析法的分析步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:⑴确认待分析的原变量是否适合作因子分析。⑵构造因子变量。⑶利用旋转方法使因子变量更具有可解释性。⑷计算因子变量得分。(ii)因子分析的计算过程:⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。⑵求标准化数据的相关矩阵;⑶求相关矩阵的特征值和特征向量;⑷计算方差贡献率与累积方差贡献率;⑸确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;⑹因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。⑺用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。⑻综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。⑼得分排序:利用综合得分可以得到得分名次。在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:u30fb 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 *** ,从子 *** 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。u30fb 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。u30fb 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 *** ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 问题二:怎么用SPSS做因子分析具体的步骤是什么由 把需要进行因子分析的变量 全部移入因子分析 对话框,然后选择正交旋转 点确定就好了 问题三:因子分析可分为哪三个步骤 职务分析是一项技术性很强的工作,需要做周密的准备。同时还需具有与人力资源管理活动相匹配的科学的、合理的操作程序。 (一)准备阶段 1、建立工作分析小组。小组成员通常由分析专家构成。所谓分析专家,是指具有分析专长,并对组织结构及组织内各项工作有明确概念的人员。一旦小组成员确定之后,赋予他们进行分析活动的权限,以保证分析工作的协调和顺利进行。 2、明确工作分析的总目标、总任务。根据总目标、总任务,对企业现状进行初步了解,掌握各种数据和资料。 3、明确工作分析的目的。有了明确的目的,才能正确确定分析的范围、对象和内容,规定分析的方式、方法,并弄清应当收集什么资料,到哪儿去收集,用什么方法去收集。 4、明确分析对象。为保证分析结果的正确性,应该选择有代表性、典型性的工作。 5、建立良好的工作关系。为了搞好工作分析,还应做好员工的心理准备工作,建立起友好的合作关系。 (二)调查阶段 分析人员应制定工作分析的时间计划进度表,以保证这项工作能够按部就班的进行调查。同时搜集有关职位的相关信息。这一阶段包括以下几项内容: 1、选择信息来源。信息主要来源于:工作执行者本人、管理监督者、顾客、分析专家、职业名称辞典以及以往的分析资料。 2、选择收集信息的方法和系统。信息收集的方法和分析信息适用的系统由工作分析人员根据企业的实际需要灵活运用。 3、搜集职位的相关信息 (三)分析阶段 工作分析就是审查、分析企业某个工作有关的信息的过程。也就是说,该阶段包括信息的整理、审查、分析三个相关活动,是整个工作分析过程的主要部分。 1、工作名称 该名称必须明确,使人看到工作名称,就可以大致了解工作内容。如果该工作已完成了工作评价,在工资上已有固定的等级,则名称上可加上等级。 2、聘用人员数目 同一工作所聘用工作人员的数目和性别,应予以记录。 3、工作单位 工作单位是显示工作所在的单位及其上下左右的关系,也就是说明工作的组织位置。 4、职责 所谓职责,就是这项工作的权限和责任有多大,主要包括以下几方面: 5、工作知识 工作知识是为圆满完成某项工作,工作人员应具备的实际知识。这种知识应包括任用后为执行其工作任务所需获得的知识,以及任用前已具备的知识。 6、智力要求 智力要求指在执行过程中所需运用的智力,包括判断、决策、警觉、主动、积极、反应、适应等。 问题四:验证性因子分析的测试步骤 验证性因子分析往往通过结构方程建模来测试。在实际科研中,验证性因子分析的过程也就是测度模型的检验过程。可以进行测度模型及包括因子之间关系的结构方程建模并拟合的统计软件有很多,比如LISREL、AMOS、EQS、MPLUS等。其中最常用的是LISREL。在LISREL这个软件中有三种编程语言:PRELIS是用来作数据处理或简单运算,比如作一些回归分析、计算一个样本的协方差矩阵;LISREL是一种矩阵编程语言,它用矩阵的方式来定义我们在测度项与构件、构件之间的关系,然后采用一个估计方法 (比如极大似然估计) 进行模型拟合;SIMPLIS是一种简化的结构方程编程语言,适合行为研究者用。一般来讲,研究者需要先通过SIMPLIS建立测度模型,然后进行拟合。根据拟合的结果,测度模型可能需要调整,抛弃质量差的测度项,然后再拟合,直到模型的拟合度可以接受为止。 问题五:如何正确运用因子分析法进行综合评价 转载以下资料供参考 编辑本段SWOT分析步骤 强势――弱势――机会――威胁 从竞争角度看,对成本措施的抉择分析,不仅来自于对企业内部因素的分析判断,还来自于对竞争态势的分析判断。成本的强势――弱势――机会――威胁(SWOT)分析的核心思想是通过对企业外部环境与内部条件的分析,明确企业可利用的机会和可能面临的风险,并将这些机会和风险与企业的优势和缺点结合起来,形成企业成本控制的不同战略措施。 SWOT分析基本步骤为: (1)分析企业的内部优势、弱点既可以相对企业目标而言的,也可以相对竞争对手而言的。 (2)分析企业面临的外部机会与威胁,可能来自于与竞争无关的外环境因素的变化,也可能来自于竞争对手力量与因素变化,或二者兼有,但关键性的外部机会与威胁应予以确认。 (3)将外部机会和威胁与企业内部优势和弱点进行匹配,形成可行的战略。 SWOT分析有四种不同类型的组合: 优势――机会(SO)组合、弱点――机会(WO)组合、优势――威胁(ST)组合和弱点――威胁(WT)组合。 优势――机会(SO)战略是一种发展企业内部优势与利用外部机会的战略,是一种理想的战略模式。当企业具有特定方面的优势,而外部环境又为发挥这种优势提供有利机会时,可以采取该战略。例如良好的产品市场前景、供应商规模扩大和竞争对手有财务危机等外部条件,配以企业市场份额提高等内在优势可成为企业收购竞争对手、扩大生产规模的有利条件。 弱点――机会(WO)战略是利用外部机会来弥补内部弱点,使企业改劣势而获取优势的战略。存在外部机会,但由于企业存在一些内部弱点而妨碍其利用机会,可采取措施先克服这些弱点。例如,若企业弱点是原材料供应不足和生产能力不够,从成本角度看,前者会导致开工不足、生产能力闲置、单位成本上升,而加班加点会导致一些附加费用。在产品市场前景看好的前提下,企业可利用供应商扩大规模、新技术设备降价、竞争对手财务危机等机会,实现纵向整合战略,重构企业价值链,以保证原材料供应,同时可考虑购置生产线来克服生产能力不足及设备老化等缺点。通过克服这些弱点,企业可能进一步利用各种外部机会,降低成本,取得成本优势,最终赢得竞争优势。 优势――威胁(ST)战略是指企业利用自身优势,回避或减轻外部威胁所造成的影响。如竞争对手利用新技术大幅度降低成本,给企业很大成本压力;同时材料供应紧张,其价格可能上涨;消费者要求大幅度提高产品质量;企业还要支付高额环保成本;等等,这些都会导致企业成本状况进一步恶化,使之在竞争中处于非常不利的地位,但若企业拥有充足的现金、熟练的技术工人和较强的产品开发能力,便可利用这些优势开发新工艺,简化生产工艺过程,提高原材料利用率,从而降低材料消耗和生产成本。另外,开发新技术产品也是企业可选择的战略。新技术、新材料和新工艺的开发与应用是最具潜力的成本降低措施,同时它可提高产品质量,从而回避外部威胁影响。 弱点――威胁(WT)战略是一种旨在减少内部弱点,回避外部环境威胁的防御性技术。当企业存在内忧外患时,往往面临生存危机,降低成本也许成为改变劣势的主要措施。当企业成本状况恶化,原材料供应不足,生产能力不够,无法实现规模效益,且设备老化,使企业在成本方面难以有大作为,这时将迫使企业采取目标聚集战略或差异化战略,以回避成本方面的劣势,并回避成本原因带来的威胁。SWOT分析运用于企业成本战略分析可发挥企业优势,利用机会克服弱点,回避风险,获取或维护成本优势,将企业成本控制战略建立在对内外部因素分析及对竞争势态......>> 问题六:用SPSS做因子分析时,怎样给数据标准化(具体操作步骤)? 我一般都是在excel里对数据进行标准化预处理骸然后拿处理后的数据在spss里做因子分析,虽然麻烦点,但是心里有谱,知道该怎么操作,希望我的经验能帮上你 问题七:因子载荷矩阵怎么得出?要求用SPSS的具体步骤讲解下,谢谢! 1,打开SPSS数据 2,选择 分析(a) 3,选择“降维 (Date Reduction)”――因子分析(factor)4,将需要因子分析的变量拖入变量框。 5,在抽取 菜单罚 “因子固定个数” (N) 设为 1 5,点击 继续 确定 6, 你将得到公因子方差表 和 因素负荷量 表 问题八:统计分析中的因子分析(factors),如何确定因子的个数 方差累计贡献率,碎石图,特征根,很多的 问题九:用SPSS已经做出了因子分析,那么具体的分析结果应该怎么看呢? KMO检验统计量在0.7以上,说明变量之间的偏相关性较强,适合做因子分析,球形检验p小于0.001,说明变量之间存在相关性。第二格表格为共同性,表示各变量中所含原始信息能被提取的共同因子所表示的程度,根据你的数据,你提取的公因子是两个,第三个表格是指提取的俩个主成分能解福差异的比列,第四个表格是主成分表达式,第五表格是因子得分公式。2023-06-08 01:46:161
市场调查中实验设计中的因子又称为什么变量
是。同一个变量的历史值预测未来值,或者除了历史值以外,还加入一些预测因子(又称外生变量)来预测未来值。外生变量是指自变量以外的影响测试单位反应的所有变量,这些变量会削弱实验结果或使实验结果无效,从而对因变量的测试产生干扰2023-06-08 01:46:244
因子分析九个变量两个因子正常吗
正常。正常现象,这就是“双重负荷”,在两个因子上呈现高负荷,说明这道题的质量有问题。因子分析九个变量两个因子正常。因子分析(factor analysis)也是一种降维、简化数据的技术。 它通过研究众多变量之间的内部依赖关系,使用少数几个“抽象”的变量来表示其基本的 数据结构。这几个抽象的变量被称作“因子”,能反映原来 众多变量的主要信息。2023-06-08 01:46:321
因子分析变量是自变量还是因变量
在回归分析模型 Y=β0+β1X+ε(一元线性回归模型)中,Y是被解释变量,就称为因变量。X是解释变量,称为自变量。表示为:因变量Y随自变量X的变化而变化。协变量是指那些人为很难控制的变量,通常在回归分析中要排除这些因素对结果的影响。2023-06-08 01:46:391
实验设计中的因子有独立变量吗
实验设计中的因子有独立变量。根据查询相关资料信息,实验设计中的因子有独立变量遵循单因子变量原则,即控制其他因素不变,只改变其中一个变量,观察其对实验结果的影响。2023-06-08 01:46:451
实验的变量因子是啥意思
就是在实验过程中,可能对结果实验产生影响的, 可变化的影响因素您的采纳,我的追求。、。。可追问,可长期网上辅导2023-06-08 01:47:121
因子分析里变量可以调整吗
因子分析里变量可以调整。根据相关公开资料查询显示,SPSS因子分析可将变量减少,因子分析算是spss高级进阶的内容了,一般缺少统计基础的人很难理解因子分析的数据基础,导致在数据分析的时候忽略很多细节,导致错误的发生。在因子分析中最容易发生的一个错误就是某些变量的因子载荷出现负数而没有对其进行处理。2023-06-08 01:47:191
因子分析的变量必须是字符型变量吗
因子分析的变量必须是字符型变量。根据查询相关公开信息显示因子分析从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法,因此因子分析的变量必须是字符型变量。2023-06-08 01:47:261
spss进行单因子方差分析的时候因变量和因子怎么确定?
你乱作呢啊不是这么做的因子是分组变量专业数据分析找我做2023-06-08 01:47:365
SPSS中因子分析中有个选择变量和变量是什么区别,举例说明一下,谢谢各位
变量是用在方程中的, 选择变量是过滤个案的. 比如说个案要求某变量中的值>6, 则那个变量大于六的个案才进入方程. 问题基础点, 不介意的话看看书吧.SPSS的教材挺多的.2023-06-08 01:49:082
固定因子是自变量吗
固定因子是自变量的。自变量一词来自数学。也叫实验刺激。在数学中,y=f(x)。在这一方程中自变量是x,因变量是y。2023-06-08 01:49:221
spss中因变量 因子 和协变量
因变量:一般是分类变量,即取值没有随机性的,比如性别 非男即女,年级等或者只有两个取值的。。协变量:一般指连续变量2023-06-08 01:49:301
因子分析怎么做?
问题一:用SPSS已经做出了因子分析,那么具体的分析结果应该怎么看呢? KMO检验统计量在0.7以上,说明变量之间的偏相关性较强,适合做因子分析,球形检验p小于0.001,说明变量之间存在相关性。第二格表格为共同性,表示各变量中所含原始信息能被提取的共同因子所表示的程度,根据你的数据,你提取的公因子是两个,第三个表格是指提取的俩个主成分能解福差异的比列,第四个表格是主成分表达式,第五表格是因子得分公式。 问题二:因子分析到底有什么用处? 问题:大家觉得因子分析到底有什幺用处呢?把原来很多个影响因素归纳成几个影响因子,如果不继续做回归或者聚类的话,光做因子分析有价值吗?答复:因子分析是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。在你对问题系统结构不了解时候,因子分析可以根据数据内在逻辑性,把它归并成几个公因子,每个公因子分别代表空间的一个维度,如果经过正交或斜 交旋转的话,各个维度之间可以认为是不相关的,这些公因子能够相对完整地刻画对象的体系维度,最起码累计方差贡献率大于85%的话,就基本能够保证重要信 息不丢失了。一句话,你如果对研究对象到底应该分为几个维度不清楚的话,用因子分析可以通过数据内在逻辑告诉你。但如果你对研究对象体系比较清楚的话,那你直接确定维度,通过AHP计算出权重,就能够把系统表述清楚了。但这里面有巨大问题,单纯通过数据内 在逻辑来判断维度,常常是错误的,而主观判断其实更加科学,并非象统计学宣称的,数据说话才有发言权。真正有发言权的,是你对问题的经验认识程度。人们为 了避免被人嘲笑主观判断的失误,而越来越选择了统计分析,实际上,他们并不清楚,单纯用统计分析来做判断,才是最愚蠢的。只有主客观结合起来,才是相对科 学的,两者矛盾的时候,应该深入研究矛盾的根源,搞不清楚的话,我认为指标体系评价法要远比统计分析准确的多。而变量之所以能分布在不同的因子内,则是由 于其方差波动性大小和变量之间的相关性决定的,波动性越大,越排在前面的公因子中,各个公因子之间的变量是不相关的,而每个公因子之间的变量是相关的。因 子分析认为那些数据波动大的变量对对象影响作用更大,它们排在公因子的前列,这样单纯从数据逻辑来判断的准则你认为对吗?我想,如果管理和社会科学都这幺 认为的话,那错误将大大增加了。上面想法是我这两年做课题的体会,没有在任何一本书上看过相关说法,也许说的不对,这是我个人看法。如果让我选择的话,我 宁愿用指标体系评价法,体系几个维度事先就清楚,最多先用因子分析算算,看看数据波动性如何,到底能确定几个维度,只起辅助作用。研究者就是专家,指标体 系的维度由主观来做判断,这主要来自经验判断,而不是由数据判断,我认为其实更科学。当然,如果你对问题一无所知,那指标体系评价法用AHP来做的话,错 误很可能更多。我以前就强烈批判过AHP。说到底,没有一种评价方法是好的,说明问题就好。问题:那能对LISREL进行类似于因子分析的探索性因素分析了解吗?能给点评价么?3x答复:下面是探索性分析的原理:传统上所谈的因素分析)factor *** ysis)指的是探索性因素分析)exploratory factor *** ysis),它的目的是在承认有测量误差的情形下,尝试用少数的因素)factors)以解释许多变项间的相关关系。随着统计理论及电脑计算上的进展,目前因素分析的方法可分成探索性因素分析)exploratory factor *** ysis,EFA)及验证性因素分析)confirmatory factor *** ysis,CFA),这两类分析之间的差别在于研究者对研究变项间因素结构的了解程度不同。如果研究者对资料内所含的因素性质,结构及个数不是很 清楚,则可使用探索性因素分析试图找出能解释资料变项间相关关系的少数几个重要因素。若研究者从过去文献中的理论及自己的研究经验,而对资料间因素之数 目,结构有一定程度的了解及假设,则可使用验证性因素分析来验证该假设是否能解......>> 问题三:进行因子分析的前提条件是各变量之间应该怎么做 本来想给你截图的,可是传不上来,我就简单说一下哈。 首先你得进行一次预计算,选择菜单里分析――降维――因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。 通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。 点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。 点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。 旋转里边选最大方差法,输出旋转解。继续。 得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。 确定。 然后就可以分析结果了。 先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析。 如果这两个检验都合格的话,才可以去写因子模型。 为了便于描述,假设我们有两个因子f1,f2, 旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1*f1+系数2*f2,变量2以此类推。 因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+。。。 根据这个我们就能算出因子得分了。 因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量, 然后我们不是有一个公式吗 总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+... 根据这个公式计算一下就可以了。 用spss或者Excel都可以。 希望能对你有帮助哦。 ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。 问题四:excel2003如何做因子分析 都不知道你所说的因子是指的那个因子,数据管理因子还是什么的,提问清楚些。别人也比较容易理解! 问题五:怎样用SPSS做因子分析 在表因子变量解释贡献率(Total Variance Explained)中,看各个主因子的方差贡献率(Initial Eigenvalues栏下的% of Variance),例如图中三个主因子对应的权重为52.132、21.017、11.405,测将三个权重进行归一化处理,52.132/(52.132+21.017+11.405)、21.017/(52.132+21.017+11.405)、11.405/(52.132+21.017+11.405),所得三个数即为主因子权重 问题六:怎样用spss做因子分析? SPSS→分析→数据缩减→因子分析→选择自变量和因变量→描述里面选择KMO检验和球型检验;海转选择最大方差旋转法→确定→结果 问题七:如何利用因子分析的排名进行分析 你通过因子分析 中一个选项 保存因子得分,之后会在原数据最后保存生成3列因子得分,假设为a1 a2 a3 代表3个因子然后根据因子分析得出三个因子的特征根值,分别计算粗3个因子的权重,分别为各自的特征根值/三个因子特征根值之和. 然后综合因子得分=a1*对应权重+a2*对应权重+a3*对应权重之后就根据综合因子得分进行大小排名 就这样出来了 问题八:因子分析法需要哪些数据,用什么软件做 因子分析是用因子概括变量信息,所以首先自变量是什么?三年数据当然是一起录入,通过三年的变化来反映因变量的变化。2023-06-08 01:49:491
因子分析后做多元线性回归分析,因变量应该怎样计算
一般来说,因子分析所形成的因子都是自变量,因为因子分析所得到的因子地位是相同的,不应该做因子间的因果关系分析,而应该做这些因子对其他变量的影响或被其他变量所影响。假设因子分析所得到的因子为a1 a2 ……an,那么,需要引入a系列因子之外的其他变量(假设为b系列),即a系列与b系列因子之间才能做回归分析。就你的题目来看,你的研究应该是因子分析所得到的各个因子为自变量,其他“外部”的因子为因变量。(以上有调查问卷SPSS与结构方程模型Amos统计分析专业人士 南心网提供)2023-06-08 01:49:581
求助:spss用因子分析法 怎么得到因子得分和排名
数据在哪?请把数据发上来~2023-06-08 01:50:074
统计分析中的因子分析(factors),如何确定因子的个数
这个你刚问过了这个可以自己设定的,在选项里面有我替别人做这类的数据分析蛮多的2023-06-08 01:50:263
SPSS中的因子分析一定要分析自变量和因变量吗
因子分析不用管自变量和因变量因变量就是dependent variable我经常帮别人做类似的数据分析的2023-06-08 01:50:412
因子分析的基本步骤
直接使用SPSSAU因子分析的结果 有详细步骤和智能分析讲解,类似如下图这样的结果。SPSSAU因子分析2023-06-08 01:50:492
怎样用SPSS作以公因子为自变量的多元回归分析?求大神讲解
在SPSS当中,有个因子分析,可以通过因子分析最后得到各个因子在每一个项目上的得分,保存这个得分作为新的变量。然后用新变量再去做回归分析就可以了。2023-06-08 01:51:011
因子分析后怎么设置自变量
因子分析后设置自变量方法如下。1、打开『因子分析』对话框。2、设置『因子分析』对话框。所有变量放入右侧『变量』框内。『描述』按钮内勾选初始解KMO和巴特利特球形度检验。『提取』按钮内勾选未旋转因子解,碎石图根据需要勾选。默认选择基于特征值,但有的时候,需要强制提取固定数目的公因子数据,那么需要勾选下方的因子的固定数目。『旋转』按钮内,默认是无,若需要旋转,一般勾选最大方差法。『得分』『选项』根据需要再单独设置。3、结果解读。2023-06-08 01:51:081
因子分析
数据简化 因子分析的用途 数学模型 用矩阵的方式表达 因子分析模型的性质 因子载荷矩阵中的统计特征 旋转因子的目的 回归方法 主成分分析与因子分析 主成分分析与因子分析有所不同,主成分分析仅仅是变量变换。 主成分和公共因子的位置不同。因子分析也有因子载荷( factor loading)的概念,代表了因子和原先变量的相关系数。但是在因子分析公式中的因子载荷位置和主成分分析不同。 在数学模型上,因子分析和主成分分析也有不少区别。而且因子分析的计算也复杂得多。根据因子分析模型的特点,它还多一道程序:因子旋转( factor rotation);这个步骤可以使结果更好。 旋转后的公共因子一般没有主成分那么综合,公共因子往往可以找到实际意义,而主成分常找不到实际的含义。 可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系。如果原始变量本质上独立,就很难把很多独立变量用少数综合的变量概括,降维就可能失败。数据越相关,降维效果就越好。可用如下方法进行变量间的相关性检验:2023-06-08 01:51:501
因子分析是什么意思?
因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。共同度是指一个测验条目在所有因子上的因子载荷平方和,它代表了所有因子合起来对该条目的变异解释量,因子是用来代替繁多的条目的简化测量指标,那么共同度高即代表某个条目与其他条目相关性高,而共同度低则表明该条目与其他条目共通性很低,也就是说这个条目的独特性很强。扩展资料:主因子的权重就是其方差贡献率占这7个主因子的累计贡献率各原始变量的权重是,先根据SPSS算出的L载荷矩阵,除以对应的特征根值,算出A矩阵。再用A矩阵中的x系数除以对应x的标准差,算出的是各个原始变量的系数。各个系数占所有系数之和的比例就是权重。因子分析法确定指标权重权重体系构建常见于企业财务竞争力体系,绩效权重体系或者管理者领导力权重体系模型等。常用的权重研究分析方法中,AHP层次分析法,熵值法,组合赋值法均无法直接使用SPSS软件进行计算,因此在SPSS上利用因子分析法进行计算权重是一种常规做法。参考资料来源:百度百科——因子分析2023-06-08 01:51:571
因子分析的步骤
问题一:因子分析法的分析步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:⑴确认待分析的原变量是否适合作因子分析。⑵构造因子变量。⑶利用旋转方法使因子变量更具有可解释性。⑷计算因子变量得分。(ii)因子分析的计算过程:⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。⑵求标准化数据的相关矩阵;⑶求相关矩阵的特征值和特征向量;⑷计算方差贡献率与累积方差贡献率;⑸确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;⑹因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。⑺用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。⑻综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。⑼得分排序:利用综合得分可以得到得分名次。在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:u30fb 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 *** ,从子 *** 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。u30fb 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。u30fb 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 *** ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 问题二:怎么用SPSS做因子分析具体的步骤是什么由 把需要进行因子分析的变量 全部移入因子分析 对话框,然后选择正交旋转 点确定就好了 问题三:因子分析可分为哪三个步骤 职务分析是一项技术性很强的工作,需要做周密的准备。同时还需具有与人力资源管理活动相匹配的科学的、合理的操作程序。 (一)准备阶段 1、建立工作分析小组。小组成员通常由分析专家构成。所谓分析专家,是指具有分析专长,并对组织结构及组织内各项工作有明确概念的人员。一旦小组成员确定之后,赋予他们进行分析活动的权限,以保证分析工作的协调和顺利进行。 2、明确工作分析的总目标、总任务。根据总目标、总任务,对企业现状进行初步了解,掌握各种数据和资料。 3、明确工作分析的目的。有了明确的目的,才能正确确定分析的范围、对象和内容,规定分析的方式、方法,并弄清应当收集什么资料,到哪儿去收集,用什么方法去收集。 4、明确分析对象。为保证分析结果的正确性,应该选择有代表性、典型性的工作。 5、建立良好的工作关系。为了搞好工作分析,还应做好员工的心理准备工作,建立起友好的合作关系。 (二)调查阶段 分析人员应制定工作分析的时间计划进度表,以保证这项工作能够按部就班的进行调查。同时搜集有关职位的相关信息。这一阶段包括以下几项内容: 1、选择信息来源。信息主要来源于:工作执行者本人、管理监督者、顾客、分析专家、职业名称辞典以及以往的分析资料。 2、选择收集信息的方法和系统。信息收集的方法和分析信息适用的系统由工作分析人员根据企业的实际需要灵活运用。 3、搜集职位的相关信息 (三)分析阶段 工作分析就是审查、分析企业某个工作有关的信息的过程。也就是说,该阶段包括信息的整理、审查、分析三个相关活动,是整个工作分析过程的主要部分。 1、工作名称 该名称必须明确,使人看到工作名称,就可以大致了解工作内容。如果该工作已完成了工作评价,在工资上已有固定的等级,则名称上可加上等级。 2、聘用人员数目 同一工作所聘用工作人员的数目和性别,应予以记录。 3、工作单位 工作单位是显示工作所在的单位及其上下左右的关系,也就是说明工作的组织位置。 4、职责 所谓职责,就是这项工作的权限和责任有多大,主要包括以下几方面: 5、工作知识 工作知识是为圆满完成某项工作,工作人员应具备的实际知识。这种知识应包括任用后为执行其工作任务所需获得的知识,以及任用前已具备的知识。 6、智力要求 智力要求指在执行过程中所需运用的智力,包括判断、决策、警觉、主动、积极、反应、适应等。 问题四:用SPSS做因子分析时,怎样给数据标准化(具体操作步骤)? 我一般都是在excel里对数据进行标准化预处理骸然后拿处理后的数据在spss里做因子分析,虽然麻烦点,但是心里有谱,知道该怎么操作,希望我的经验能帮上你 问题五:验证性因子分析的测试步骤 验证性因子分析往往通过结构方程建模来测试。在实际科研中,验证性因子分析的过程也就是测度模型的检验过程。可以进行测度模型及包括因子之间关系的结构方程建模并拟合的统计软件有很多,比如LISREL、AMOS、EQS、MPLUS等。其中最常用的是LISREL。在LISREL这个软件中有三种编程语言:PRELIS是用来作数据处理或简单运算,比如作一些回归分析、计算一个样本的协方差矩阵;LISREL是一种矩阵编程语言,它用矩阵的方式来定义我们在测度项与构件、构件之间的关系,然后采用一个估计方法 (比如极大似然估计) 进行模型拟合;SIMPLIS是一种简化的结构方程编程语言,适合行为研究者用。一般来讲,研究者需要先通过SIMPLIS建立测度模型,然后进行拟合。根据拟合的结果,测度模型可能需要调整,抛弃质量差的测度项,然后再拟合,直到模型的拟合度可以接受为止。 问题六:用SPSS已经做出了因子分析,那么具体的分析结果应该怎么看呢? KMO检验统计量在0.7以上,说明变量之间的偏相关性较强,适合做因子分析,球形检验p小于0.001,说明变量之间存在相关性。第二格表格为共同性,表示各变量中所含原始信息能被提取的共同因子所表示的程度,根据你的数据,你提取的公因子是两个,第三个表格是指提取的俩个主成分能解福差异的比列,第四个表格是主成分表达式,第五表格是因子得分公式。 问题七:统计分析中的因子分析(factors),如何确定因子的个数 方差累计贡献率,碎石图,特征根,很多的 问题八:因子分析法如何确定主成分及各个指标的权重? 5分 在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。 确定数据的权重也是进行数据分析的重要前提。可以利用SPSS的因子分析方法来确定权重。主要步骤是: (1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。 (2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。 (3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1j*X1 +β2j*X2 +β3j*X3 + ……+ βnj*Xn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。 (4)求出指标权重。 ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指标Xi的权重。 因子分析应用在评价指标权重确定中,通过主成分分析法得到的各指标的公因子方差,其值大小表示该项指标对总体变异的贡献,通过计算各个公因子方差占公因子方差总和的百分数。 问题九:因子载荷矩阵怎么得出?要求用SPSS的具体步骤讲解下,谢谢! 1,打开SPSS数据 2,选择 分析(a) 3,选择“降维 (Date Reduction)”――因子分析(factor)4,将需要因子分析的变量拖入变量框。 5,在抽取 菜单罚 “因子固定个数” (N) 设为 1 5,点击 继续 确定 6, 你将得到公因子方差表 和 因素负荷量 表 问题十:spss中如何用因子分析计算各指标的权重? 在表因子变量解释贡献率(Total Variance Explained)中,看各个主因子的方差贡献率(Initial Eigenvalues栏下的% of Variance),例如图中三个主因子对应的权重为52.132、21.017、11.405,测将三个权重进行归一化处理,52.132/(52.132+21.017+11.405)、21.017/(52.132+21.017+11.405)、11.405/(52.132+21.017+11.405),所得三个数即为主因子权重2023-06-08 01:52:221
因子分析过程?
问题一:因子分析法的分析步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:⑴确认待分析的原变量是否适合作因子分析。⑵构造因子变量。⑶利用旋转方法使因子变量更具有可解释性。⑷计算因子变量得分。(ii)因子分析的计算过程:⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。⑵求标准化数据的相关矩阵;⑶求相关矩阵的特征值和特征向量;⑷计算方差贡献率与累积方差贡献率;⑸确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;⑹因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。⑺用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。⑻综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。⑼得分排序:利用综合得分可以得到得分名次。在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:u30fb 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子 *** ,从子 *** 所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。u30fb 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。u30fb 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子 *** ;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 问题二:因子分析可分为哪三个步骤 职务分析是一项技术性很强的工作,需要做周密的准备。同时还需具有与人力资源管理活动相匹配的科学的、合理的操作程序。 (一)准备阶段 1、建立工作分析小组。小组成员通常由分析专家构成。所谓分析专家,是指具有分析专长,并对组织结构及组织内各项工作有明确概念的人员。一旦小组成员确定之后,赋予他们进行分析活动的权限,以保证分析工作的协调和顺利进行。 2、明确工作分析的总目标、总任务。根据总目标、总任务,对企业现状进行初步了解,掌握各种数据和资料。 3、明确工作分析的目的。有了明确的目的,才能正确确定分析的范围、对象和内容,规定分析的方式、方法,并弄清应当收集什么资料,到哪儿去收集,用什么方法去收集。 4、明确分析对象。为保证分析结果的正确性,应该选择有代表性、典型性的工作。 5、建立良好的工作关系。为了搞好工作分析,还应做好员工的心理准备工作,建立起友好的合作关系。 (二)调查阶段 分析人员应制定工作分析的时间计划进度表,以保证这项工作能够按部就班的进行调查。同时搜集有关职位的相关信息。这一阶段包括以下几项内容: 1、选择信息来源。信息主要来源于:工作执行者本人、管理监督者、顾客、分析专家、职业名称辞典以及以往的分析资料。 2、选择收集信息的方法和系统。信息收集的方法和分析信息适用的系统由工作分析人员根据企业的实际需要灵活运用。 3、搜集职位的相关信息 (三)分析阶段 工作分析就是审查、分析企业某个工作有关的信息的过程。也就是说,该阶段包括信息的整理、审查、分析三个相关活动,是整个工作分析过程的主要部分。 1、工作名称 该名称必须明确,使人看到工作名称,就可以大致了解工作内容。如果该工作已完成了工作评价,在工资上已有固定的等级,则名称上可加上等级。 2、聘用人员数目 同一工作所聘用工作人员的数目和性别,应予以记录。 3、工作单位 工作单位是显示工作所在的单位及其上下左右的关系,也就是说明工作的组织位置。 4、职责 所谓职责,就是这项工作的权限和责任有多大,主要包括以下几方面: 5、工作知识 工作知识是为圆满完成某项工作,工作人员应具备的实际知识。这种知识应包括任用后为执行其工作任务所需获得的知识,以及任用前已具备的知识。 6、智力要求 智力要求指在执行过程中所需运用的智力,包括判断、决策、警觉、主动、积极、反应、适应等。 问题三:怎么用SPSS做因子分析具体的步骤是什么由 把需要进行因子分析的变量 全部移入因子分析 对话框,然后选择正交旋转 点确定就好了 问题四:验证性因子分析的测试步骤 验证性因子分析往往通过结构方程建模来测试。在实际科研中,验证性因子分析的过程也就是测度模型的检验过程。可以进行测度模型及包括因子之间关系的结构方程建模并拟合的统计软件有很多,比如LISREL、AMOS、EQS、MPLUS等。其中最常用的是LISREL。在LISREL这个软件中有三种编程语言:PRELIS是用来作数据处理或简单运算,比如作一些回归分析、计算一个样本的协方差矩阵;LISREL是一种矩阵编程语言,它用矩阵的方式来定义我们在测度项与构件、构件之间的关系,然后采用一个估计方法 (比如极大似然估计) 进行模型拟合;SIMPLIS是一种简化的结构方程编程语言,适合行为研究者用。一般来讲,研究者需要先通过SIMPLIS建立测度模型,然后进行拟合。根据拟合的结果,测度模型可能需要调整,抛弃质量差的测度项,然后再拟合,直到模型的拟合度可以接受为止。 问题五:统计分析中的因子分析(factors),如何确定因子的个数 方差累计贡献率,碎石图,特征根,很多的 问题六:请问因子分析结果怎么解释? 因子分析结果的方法和过程如下: 1、因子的提取和旋转 (1) 确定您的因子分析的目的之前运行的程序和解释输出。阿因子分析常见的用途是定义一组尺寸集(因素)对现有的基本措施。例如,假设您要定义一到,旨在衡量一个人的政治态度调查问卷的答复确定的基本因素。你的假设可能是一个潜在的一些因素有助于形成对政治和 *** 的态度。 (2) 检查您的因子提取输出。因子提取是第一次两个因素分析阶段,第二个因素是轮换。提取有助于找出潜在因素。通过检查你确定你的输出两部分:初始特征值和卵石这个阴谋。特征值衡量的是一组特殊因素解释措施的变异量。一个有用的指引,是包括利用特征值大于1的因素。 (3) 把你的注意卵石情节,一对特征值的相对大小的图形显示。保留所有因素在急剧下降的阴谋的一部分特征值。假设在这个例子中,你有这样三个特征值的阴谋,他们都大于1。这意味着你有三个因素。 (4) 进行了三个因素三要素旋转提取。统计旋转操纵的因素,使他们更有意义。您的统计软件或统计指南将提供关于如何进行的一个因素轮换步骤。旋转运行的因素会产生额外的输出。 2、结构因素分析 (1) 在检查的因素轮换您的输出矩阵的一部分相关的模式。这个矩阵将显示相关评分,或因素负荷量,每个变量之间的基本因素。因素负荷量高的项目 - 与0.300和1.00之间(例如加或减)都与相应的因素。 (2) 确定你的三个因素的措施,每个呈正相关。您可能会发现一些项目,因为可以在低负载的所有因素因素排除。 (3) 基于高因素负荷量,名称或标签的三个因素每个项目的内容。 因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。比如,如果要测量学生的学习积极性,课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。而学习成绩可以用期中,期末成绩来反应。 问题七:如何对做过因子分析的因子做聚类分析 一般过程如下: 1.做完因子分析后,可以根据得分标记几类特殊的因子; 2.选择K-means或者分层聚类后,根据先前得到的因子,提取其特殊的性质,再进一步命名聚类分析后所得的几类。 支持我一下哈~ 问题八:MATLAB 因子分析法的案例,主要程序 呵呵。这个正好我会啊。 我搞数学建模的时候做的题目很多都是数据分析,市场调查分析就是其中一种很简单的啊。 最基本的分析工具是SPSS和SAS,他们都是常用的统计工具。 你需要做哪方面的分析,就用他们的哪些功能。最常用的是回归分析。如果你不会使用这个软件,我也可以给你分析,然后把分析数据发给你啊。 你也可以去百度里面搜“问卷调查 spss”或者“市场调查 spss”,很多这样的例子,你照着做就可以分析出来了。 先发一点资料给你看: SPSS在市场调查统计分析中的应用 SPSS是“社会科学统计软件包”(StatisticalPackagefortheSocialScience)的简称,是一种集成化的计算机数据处理应用软件,是目前世界上流行的三大统计软件之一,除了适用于社会科学之外,还适用于自然科学各领域的统计分析。将其应用于市场调查统计分析的过程,能使研究者以客观的态度,通过对受众的系统提问,收集并分析有关研究数据,以描述、解释或预测问卷调查内容的现象及其各相关因素之间的关系。在这些方面,SPSS技术的应用为市场调查实证研究中的定量分析提供了支持与保障,特别是它的易用、易学、功能强大等特点是其他方法所无法替代的。 一、SPSS的基本特点 在问卷应用于市场调查的实证研究中,会有大量的检测数据需要进行统计分析,而SPSS技术的特点恰恰适合这种实证研究的要求。其在市场调查统计的应用中具有如下特点: 1.易用、易学。SPSS采用直觉式使用界面或者说可视化界面,无需编程就可以完成工作,极大地提高了工作效率;此外,SPSS拥有强大的辅助说明系统,可帮助用户学的更快。 2.强大的表格和图形功能。SPSS能清楚地显示用户的分析结果,可以提供16种表格格式。此外,它具有顶级图形分析功能,能给出各种有用的统计图形。作为分析的一部分,它能自动生成统计结果图形,还能独立于统计过程进行图形绘制和图形分析。 3.深入分析数据的功能。除了一般常见的描述统计和推断统计外,它还包括在基本分析中最受欢迎也是在市场调查中最常用的现代统计程序,如列联表分析、主成分分析、因子分析、判别及聚类分析。 二、SPSS在市场调查统计分析的应用模式 根据上述的SPSS技术的特点和市场调查统计分析的需要,可以将SPSS在市场调查实证研究中的应用模式分为以下几种类型: 1.统计描述应用模式 统计描述应用模式指在市场调查统计分析的过程中,借助SPSS统计功能将收集到的大量数据进行分析、综合、归纳、列表、绘图等处理工作。一般而言,统计描述主要分为三方面的内容:①单变量截面数据的描述;②相对数的统计描述;③双变量截面数据的描述。SPSS最常用于描述性分析的五个过程集中在DescriptiveStatistics菜单中,分别为:Frequencies过程;Descriptives过程;Explore过程;Crosstabs过程;Ratio过程。 统计描述应用模式不仅可以使研究者了解事物的性质,而且其统计量还是对事物进行推断统计的依据。 2.假设检验应用模式 在市场调查中,通常所关心的是总体的某些特征和分布规律,而问卷调查只可以考察总体的一部分或一个样本,统计推断和假设检验就是用样本去推断总体,实质上就是凭借概率理论用观察到的部分随机变量资料来推断总体随机变量的概率分布或数字特征,如期望值和方差等,并且作出具有一定可靠程度的估计和判断。 3.量表分析应用模式 客观世界是普遍联系的统一整体,事物之间存在着相互依存、相......>>2023-06-08 01:52:291
参与因子分析的变量必须是字符型变量吗
因子分析从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量2023-06-08 01:52:363
spss单因素方差分析中什么是因子,什么是因变量
结局变量是因变量,影响因素是因子。比如不同性别样本间升高是否有统计学差值,性别选择为因子,升高为因变量2023-06-08 01:52:451
进行因子分析的前提条件是各变量之间应该怎么做
因子分析就是,我建了一堆指标(变量),变量之间得存在较强的相关性,然后才可以从这些变量中提取拥有部分变量属性的公共因子(重新命名的新变量,由原有的变量组成),这几个公共因子(组成公因子的原有变量不能重复)能代表绝大部分你的变量的信息,才可以进行因子分析。体现在SPSS上就是,kmo指标>0.7和球形检验sig值<0.05才能接着做。首先将数据复制到SPSS,然后进行标准化,然后因子分析,算出得分,观察关系,得出结论2023-06-08 01:52:535
实验设计中的因子又称为外生变量吗
是。同一个变量的历史值预测未来值,或者除了历史值以外,还加入一些预测因子(又称外生变量)来预测未来值。外生变量是指自变量以外的影响测试单位反应的所有变量,这些变量会削弱实验结果或使实验结果无效,从而对因变量的测试产生干扰。2023-06-08 01:53:191
2、单变量、固定因子为什么有两个
双重负荷。在两个因子上呈现高负荷,说明这道题的质量有问题。因子分析九个变量两个因子正常。因子分析(factoranalysis)也是一种降维、简化数据的技术。它通过研究众多变量之间的内部依赖关系,使用少数几个“抽象”的变量来表示其基本的数据结构。这几个抽象的变量被称作“因子”,能反映原来众多变量的主要信息。2023-06-08 01:53:331
因子分析 调节变量
因子分析不需要把调节变量放进去2023-06-08 01:53:511
SPSS13.0 因子分析后,如何看因子载荷量和特征值,应该看哪个图,还有分散的数值怎么看?谢谢
因子分析完了有个方差表,可以看分量。比如有3个因子,10个变量。每一个变量在3个因子里面都有分量,在谁的分量最大,就归于哪个因子。所以你就可以判断哪些因子包含哪些变量了。因子分析的方法有两类。一类是探索性因子分析法,另一类是验证性因子分析。探索性因子分析不事先假定因子与测度项之间的关系,而让数据“自己说话”。主成分分析和共因子分析是其中的典型方法。验证性因子分析假定因子与测度项的关系是部分知道的,即哪个测度项对应于哪个因子,虽然我们尚且不知道具体的系数。扩展资料:因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量 (latent variable, latent factor)。比如,如果要测量学生的学习积极性(motivation),课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。而学习成绩可以用期中,期末成绩来反应。在这里,学习积极性与学习成绩是无法直接用一个测度(比如一个问题) 测准,它们必须用一组测度方法来测量,然后把测量结果结合起来,才能更准确地把握。换句话说,这些变量无法直接测量。可以直接测量的可能只是它所反映的一个表征(manifest),或者是它的一部分。在这里,表征与部分是两个不同的概念。表征是由这个隐性变量直接决定的。隐性变量是因,而表征是果,比如学习积极性是课堂参与程度 (表征测度)的一个主要决定因素。因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。参考资料来源:百度百科--因子分析参考资料来源:百度百科--因子2023-06-08 01:53:581
进行因子分析时观测变量需要满足的条件有?
进行因子分析的前提条件是,各变量之间应该低度相关。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。因此因子分析的首要前提就是各个变量之间应该具有一定的相关度,不要求相关度过高,只是低度相关。比如,如果要测量学生的学习积极性,课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。而学习成绩可以用期中,期末成绩来反应。在这里,学习积极性与学习成绩是无法直接用一个测度测准,它们必须用一组测度方法来测量,然后把测量结果结合起来,才能更准确地把握。因子分析的相关应用:在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概念通常是通过等级评分问题来测量的,如利用李克特量表取得的变量。每一个指标的集合(或一组相关联的指标)就是一个因子,指标概念等级得分就是因子得分。因子分析在市场调研中有着广泛的应用,主要包括:1、消费者习惯和态度研究(U&A)。2、品牌形象和特性研究。3、服务质量调查。4、个性测试。5、形象调查。6、市场划分识别。7、顾客、产品和行为分类。2023-06-08 01:54:121
spss中因变量 因子 和协变量
因变量:一般是分类变量,即取值没有随机性的,比如性别非男即女,年级等或者只有两个取值的。。协变量:一般指连续变量2023-06-08 01:55:041
因子分析中,初始因子模型应满足以下哪些条件
应该满足变量和因子两个条件。1、一、原始变量之间应存在较强的相关关系。2、二、因子要具有命名可解释性。2023-06-08 01:55:111
如何理解因子分析法?
因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。共同度是指一个测验条目在所有因子上的因子载荷平方和,它代表了所有因子合起来对该条目的变异解释量,因子是用来代替繁多的条目的简化测量指标,那么共同度高即代表某个条目与其他条目相关性高,而共同度低则表明该条目与其他条目共通性很低,也就是说这个条目的独特性很强。扩展资料:主因子的权重就是其方差贡献率占这7个主因子的累计贡献率各原始变量的权重是,先根据SPSS算出的L载荷矩阵,除以对应的特征根值,算出A矩阵。再用A矩阵中的x系数除以对应x的标准差,算出的是各个原始变量的系数。各个系数占所有系数之和的比例就是权重。因子分析法确定指标权重权重体系构建常见于企业财务竞争力体系,绩效权重体系或者管理者领导力权重体系模型等。常用的权重研究分析方法中,AHP层次分析法,熵值法,组合赋值法均无法直接使用SPSS软件进行计算,因此在SPSS上利用因子分析法进行计算权重是一种常规做法。参考资料来源:百度百科——因子分析2023-06-08 01:55:181
spss进行单因子方差分析的时候因变量和因子怎么确定
1、首先在自己的电脑上打开spss,之后再这个软件上依次点击“分析—一般线性模型——单变量”。2、点击完单变量随后,这时候就出出现“单变量”窗口。将“卵泡刺激素FSH”放入“因变量”列表。3、之后将“药剂”“阶段”放入“固定因子”列表,将“受试者编号”放入“随机因子”列表。4、最后点击“选项”,选择“描述统计”、“参数估计值”,得到分析结果。2023-06-08 01:55:421
spss怎么把两个因子相乘
方法/步骤 因子相关性的检验:方法有相关系数矩阵、反映像相关矩阵、巴特利特球度检验、KMO检验。2、 2、因子提取和因子载荷矩阵的求解:基于主成分模型的主成分分析法、基于因子分析模型的主轴因子法、极大似然法、最小二乘法、a因子提取法、映像分析法。3、主成分分析法能够为因子分析提供初始解,因子分析是主成分分析结果的延伸和拓展。4、 3、因子命名、旋转:在因子载荷矩阵中,多行情况,遇到变量与多个因子有较大的相关关系,即变量需要多个因子共同解释;多列情况,一个因子可以同时解释多个变量。5、说明一个因子不能单独代表原有的一个变量,因子模糊不清,而实际情况是对因子有清醒认识,所以因子旋转。6、必不可少,尽量使一个变量在较少的几个因子上有比较高的载荷。7、 4、计算因子得分:因子得分为因子分析的最终体现,计算各因子在每个样本上的具体数值,即为因子得分,形成的变量称为因子变量,在接下来的分析中因子变量可代替原有的变量进行数据建模,对问题降维或简化处理。8、 5、输出结果分析: 借助相关系数矩阵、反映像相关矩阵、巴特利特球度检验和KMO检验方法分析。9、观察大部分相关系数都较高,线性关系较强,可以提取公共因子,适合因子分析。10、在KMO中,概率为0.000小于显著性水平,拒绝原假设,与单位矩阵有显著差异,KMO为0.882,说明适合因子分析。11、 每组的列向量含义,特征值、方差贡献率、累计方差贡献率。12、第二列表示提取两个因子,共同解释84.259%,丢失的信息较少。13、第三列表示旋转后的因子,总的方差贡献率没有改变,就是说没有影响原有的共同度,重新分配各个因子解释原有变量的方差,改变各个因子的方差贡献率。14、 碎石图:纵坐标为特征值,横坐标为因子个数。15、特征值越小则对原有变量的贡献很小,可以忽略,所以提取两个也算是可以的。16、 成分矩阵:结果是某个变量等于两个因子与对应系数相乘后相加的结果。17、观察可知,第一个因子与所有变量的相关性程度高,与第二个不高,含义模糊,不利于命名,所以因子要旋转。18、 因子命名解释:采用方差极大法对因子载荷矩阵实行正交旋转以使因子具有命名解释性。19、可以指定按照第一因子载荷降序的顺序输出旋转后的因子载荷。20、见图,联营、股份、集体、国有在第一因子有较高载荷,可解释为内部投资经济单位,其他、外商、港澳在第二个的载荷高,解释为外来投资经济单位。21、观察因子协方差矩阵,两个因子的线性相关性几乎没有,符合因子分析的效果。本文就为大家分享到这里,希望小伙伴们会喜欢2023-06-08 01:56:151
因子分析法(FA)
3.2.1.1 技术原理因子分析是研究相关阵或协方差阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。R型因子分析研究变量(指标)之间的相关关系,通过对变量的相关阵或协方差阵内部结构的研究,找出控制所有变量的几个公共因子(或称主因子、潜因子),用以对变量或样品进行分类;Q型因子分析研究样品之间的相关关系,通过对样品的相似矩阵内部结构的研究找出控制所有样品的几个主要因素(或称主因子)这两种因子分析的处理方法一样,只是出发点不同。R型从变量的相关阵出发,Q型从样品的相似矩阵出发。对一批观测数据,可以根据实际问题的需要来决定采用哪一种类型的因子分析。对多变量的平面数据进行最佳综合和简化,即在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理。可以通过下面的数学模型来表示:地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例式中:x1,x2,…,xi是p个原有变量,是均值为零、标准差为1的标准化变量,经过降维处理,p个变量可以综合成m个新指标 F1,F2,…,Fm,且 x 可由 Fm线性表示出,即:x=AF+ε,其中矩阵A=(αij)p×m,为因子载荷矩阵,aij统计学中称为“权重”。地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例 式中:A是第i个原有变量在第j个因子变量上的负荷,公共因子矩阵F=(F1,F2,…,Fm),特殊因子矩阵ε=(ε1,ε2,…,εi)T,表示了原有变量不能被因子变量所解释的部分,相当于多元回归分析中的残差部分。因子载荷矩阵A中各行元素的平方和,称为变量共同度,是全部公共因子对变量Xi的总方差所作出的贡献,称为公因子方差,表明xi对公共因子F1,F2,…,Fm的共同依赖程度。地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例因子载荷矩阵A中各列元素的平方和,记为 :地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例式中: 的统计意义与 恰好相反, 表示第j个公共因子Fj对X的所有分量x1,…,xp的总影响,称为第j个公共因子Fj对x的贡献,它是衡量第j个公共因子相对重要性的指标。目前用于估计A的方法主要有主因成分法、主因子解和极大似然法。3.2.1.2 技术流程(1)数据合理性检验因子分析的应用要求原始变量之间有较强的相关关系,因此,在分析之前,首先需要对数据进行相关性分析,最简单的方法就是计算变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验中,大部分都小于0.3,那么这些变量就不适合进行因子分析。SPSS常用的统计检验方法有巴特利特球形检验、反映像相关矩阵检验和KMO检验。巴特利特球形检验(Bartlett Test of Sphericity),若检验统计量较大,则认为原始数据间存在相关性,适合进行因子分析,否则不适合。反映像相关矩阵检验(Anti-image Correlation Matrix),反映像相关矩阵中元素的绝对值比较大,那么说明这些变量不适合做因子分析。KMO(Kaiser Meyer Olkin)检验如表3.1。表3.1 KMO检验标准表(2)构造因子变量构造因子变量的方法有很多种,如基于主成分模型的主成分分析法和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。(3)利用旋转使得因子变量更具有可解释性载荷矩阵A中某一行可能有多个aij比较大,说明某个原有变量可能同时与几个因子有比较大的相关关系;同时载荷矩阵A中某一列中也可能有多个aij较大,说明某个因子变量可能解释多个原变量的信息,但它只能解释某个变量一小部分信息,不是任何一个变量的典型代表,会使某个因子变量的含义模糊不清。在实际分析中,希望对因子变量的含义有比较清楚的认识,这时,可以通过因子矩阵的旋转来进行。旋转的方式有正交旋转、斜交旋转、方差极大法,其中最常用的是方差极大法。(4)计算因子变量的得分计算因子得分首先将因子变量表示为原有变量的线性组合,即:Fm=βm1x1+βm2x2+…+βmixi (3.5)估计因子得分的方法有回归法、Bar-tlette法、Anderson-Rubin 法等。默认取特征值大于1的公因子或累计贡献率大于85%(70%或90%)的最小正整数的因子(图3.2)。图3.2 技术流程图3.2.1.3 适用范围因子分析是研究相关阵或协方差阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。FA法使用简单,不需要研究地区优先源的监测数据,在缺乏污染源成分谱的情况下仍可解析,并可广泛使用统计软件处理数据。其不足之处在于需要输入大量数据,而且只能得到各类元素对主因子的相对贡献百分比。2023-06-08 01:56:241
因子分析法的分析步骤
因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:⑴确认待分析的原变量是否适合作因子分析。⑵构造因子变量。⑶利用旋转方法使因子变量更具有可解释性。⑷计算因子变量得分。(ii)因子分析的计算过程:⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。⑵求标准化数据的相关矩阵;⑶求相关矩阵的特征值和特征向量;⑷计算方差贡献率与累积方差贡献率;⑸确定因子:设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;⑹因子旋转:若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。⑺用原指标的线性组合来求各因子得分:采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。⑻综合得分以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )此处wi为旋转前或旋转后因子的方差贡献率。⑼得分排序:利用综合得分可以得到得分名次。在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。2023-06-08 01:56:311
理论:因子分析原理剖析
因子分析概述: 因子分析分为Q型和R型,我们对R型进行如下研究: 一.因子分析步骤: 1.确认是是否适合做因子分析 2.构造因子变量 3.旋转方法解释 4.计算因子变量得分 二.因子分析的计算过程: 1.将原始数据标准化 目的:消除数量级量纲不同 2.求标准化数据的相关矩阵 3.求相关矩阵的特征值和特征向量 4.计算方差贡献率和累计方差贡献率 5.确定因子 F1,F2,F3...为前m个因子包含数据总量(累计贡献率)不低于80%。可取前m各因子来反映原评价 6.因子旋转 当所得因子不足以明显确定或不易理解时选择此方法 7.原指标的线性组合求各因子的得分 两种方法:回归估计和barlett估计法 8.综合得分:以各因子的方差贡献率为权,各因子的线性组合得到各综合评价指标函数 F=(λ1F1+…λmFm)/(λ1+…λm) =W1F1+…WmFm 9.得分排序 因子分析详解: 因子分析模型,又名正交因子模型 X=AF+u025b 其中: X=[X1,X2,X3...XP]‘ A= F=[F1,F2...Fm]" u025b=[u025b1,u025b2...u025bp]" 以上满足: (1)m小于等于p (2)cov(F,u025b)=0 (3)Var(F)=Im D(u025b)=Var(u025b)= u025b1,u025b2...u025bp不相关,且方差不同 我们把F成为X公共因子,A为荷载矩阵,u025b为X特殊因子 A=(aij) 数学上证明:aij就是i个变量与第j个因子的相关系数,参见层次分析法aij定义。 <1>荷载矩阵 就荷载矩阵的估计和解释方法有主因子和极大似然估计,我们就主因子分析而言:(是主因子不是主成份) 设随机向量X的协方差阵为u01a9 λ1,λ2,λ3..>0为u01a9的特征根 μ1,μ2,μ3...为对应的标准正交向量 我们大一学过线代或者高代,里面有个东西叫谱分析: u01a9=λ1μ1μ1"+......+λpμpμp" = 当因子个数和变量个数一样多,特殊因子方差为0. 此时,模型为X=AF,其中Var(F)=Ip 于是,Var(X)=Var(AF)=AVar(F)A"=AA" 对照u01a9分解式,A第j列应该是 也就是说,除了uj前面部分,第j列因子签好为第j个主成份的系数,所以为主成份法。 如果非要作死考虑u025b 原来的协方差阵可以分解为: u01a9=AA"+D= 以上分析的目的; 1.因子分析模型是描述原变量X的协方差阵u01a9的一种模型 2.主成份分析中每个主成份相应系数是唯一确定的,然而因子分析中的每个因子的相应系数不是唯一的,因而我们的因子荷载矩阵不是唯一的 (主成分分析是因子分析的特例,非常类似,有兴趣的可以去看看,这两者非常容易混淆) <2>共同度和方差贡献 无论是在spss或者R的因子分析中都围绕着贡献度,我们来看下,它到底是什么意思。 由因子分析模型,当仅有一个公因子F时, Var(Xi)=Var(aiF)+Var(u025bi) 由于数据标准化,左端为1,右端分别为共性方差和个性方差 共性方差越大,说明共性因子作用越大。 因子载荷矩阵A中的第i行元素之平方和记为hi2 成为变量(Xi)共同度 它是公共因子对(Xi)的方差锁做出的贡献,反映了全部公共因子对变量(Xi)的影响。 hi2大表明第i个分量对F的每一个分量F1,F2,...Fm的共同依赖程度大 将因子载荷矩阵A的第j列的各元素的平方和记为gj2 成为公共因子Fj对x的方差贡献。 gj2表示第j个公共因子Fj对x的每一个分量Xi所提供的方差的总和,他就是衡量公共因子的相对重要行的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。 如果将载荷矩阵A的所有gj2都计算出来,按大小排列,就可以提炼最有影响力的公共因子。 <3>因子旋转 这方面涉及较为简单,我就简单提一下 目的:建立因子分析模型不是只要找主因子,更加重要的是意义,以便对实际进行分析,因子旋转就是使所得结论更加清晰的表示。 方法:正交旋转,斜交旋转两大类,常用正交。 便于理解,我解释下旋转的意义,以平面直角坐标系为例,我们想得到的数据正好为:y=x和y=-x上的点,我们能解释的却在x=0和y=0上,这时候我们就可以旋转坐标系,却不影响结果。2023-06-08 01:56:451
spss因子分析
在线spss平台spssau可以直接保存因子得分及综合得分,分析时直接勾选“综合得分”或“因子得分”项即可保存并用于后续的分析中。2023-06-08 01:56:542
方差膨胀因子结果包括因变量吗
方差膨胀因子结果不包括因变量。因变量的形式与方差膨胀因子无关。当因变量为分类变量时可以直接代入求得方差膨胀因子。2023-06-08 01:57:071
spss的因子载荷、特征值和解释方差分别在哪里找?
因子分析完了有个方差表,可以看分量。比如有3个因子,10个变量。每一个变量在3个因子里面都有分量,在谁的分量最大,就归于哪个因子。所以你就可以判断哪些因子包含哪些变量了。因子分析的方法有两类。一类是探索性因子分析法,另一类是验证性因子分析。探索性因子分析不事先假定因子与测度项之间的关系。主成分分析和共因子分析是其中的典型方法。验证性因子分析假定因子与测度项的关系是部分知道的,即哪个测度项对应于哪个因子,虽然尚且不知道具体的系数。扩展资料:在因子分析中,通常只选其中m个(m<p)主因子,即根据变量的相关选出第一主因子u01921,使其在各变量的公共因子方差中所占的方差贡献为最大,然后消去这个因子的影响,而从剩余的相关中,选出与之不相关的因子,使其在各个变量的剩余因子方差贡献中为最大,如此往复,直到各个变量公共因子方差被分解完毕为止。参考资料来源:百度百科-因子载荷2023-06-08 01:57:131
实验设计的因子又称为类型变量吗
也称独立变量,在实验设计中是因子,也称处理变量。它是指在实验过程中实验者所能控制、 处置或操纵的(实验者可以规定或改变这些变量.2023-06-08 01:57:261