- 阿啵呲嘚
-
梯度的几何意义,详细介绍如下:
一、梯度简介:
1、梯度的本意是一个向量矢量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向,此梯度的方向变化最快,变化率最大为该梯度的模。
2、梯度方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。函数在一点沿梯度方向的变化率最大,最大值为该梯度的模。
二、几何意义:
1、设体系中某处的物理参数,如温度,速度,浓度等,在与其垂直距离处该参数为则称为该物理参数的梯度,也即该物理参数的变化率。如果参数为速度,浓度,温度或空间,则分别称为速度梯度,浓度梯度,温度梯度或空间梯度。、
2、在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。在这个意义上,梯度是雅可比矩阵的特殊情况。
3、在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被称为梯度。
单变量微积分和多变量微积分有何区别
单变量微积分和多变量微积分的最大的区别就是变量的个数不一样,变量多了要讨论的问题也就多出来了。2023-06-06 05:13:211
单变量微积分与多变量微积分是否涵盖了微积分所有内容
这只是微积分一部分的内容微积分可主要分为常微积分(包括你说的单变量微积分与多变量微积分)和偏微积分两大类偏微积分因为难度较高, 一般只有大学的理学系才会学习2023-06-06 05:13:281
单变量微积分是什么 和高数是不是一样的? 两者有区别有? 如果有,又是什么区别呢?
高数微积分还包括多元的,单变量的只是高数最简单的一个部分而已2023-06-06 05:13:341
多变量微积分以单变量微积分为基础吗?
不是。微积分可主要分为常微积分包括单变量微积分与多变量微积分和偏微积分两大类,单变量微积不可以作为基础变多变量微积分,多变量微积分不是以单变量微积分为基础。微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。2023-06-06 05:13:401
基础微积分和单变量微积分有什么差别
这个问题的讨论是无意义的,是不必要的,是没有严格定义的,无非是二重积分有变量X,Y也是基础积分,二重积分有时可转换为单变量积分,就象二元方程有的人只用一元也可解,更有甚者连元也不用就能解,但单变量积分也不一定是基础积分,高深数学中有许多积分我们看都看不懂是什么东西,一般也只能说初学者的是基础就是了。2023-06-06 05:13:561
学习傅立叶变换需要用到多元微积分的知识吗?单变量微积分和复变函数够了吗?
单变量和复变函数足够足够。客观来说是学习多元微积分需要用到傅里叶变换,而不是反过来偏微方程(PDE)在正负无穷值域上的解是必然需要傅里叶变换知识的。而PDE又是多元微积分的重要内容,因此傅里叶和多元微积分是紧密联系的,但单学傅里叶不需要多元微积分。2023-06-06 05:14:021
微积分是怎么样计算的?
定积分2023-06-06 05:14:227
微分形式的性质
微分形式的一个优点就是能做外微分 运算。 比如ω=α(x_1,...x_n)dx_{i1}∧dx_{i2}∧...dx_{ir}是一个r次微分形式, 那么dω=dα∧dx_{i1}∧dx_{i2}∧...dx_{ir}. 这就把一个r次微分形式映到了r+1次微分形式。换言之,我们有映射d: A^r(T^*)→A^{r+1}(T^*). 这个映射称为外微分。易知两次外微分的复合等于零, 即dd=0,即poincare(庞加莱)引理. 一个微分形式ω如果满足dω=0, 我们就称其为闭形式。 如果存在另一微分形式γ, 使得ω=dγ, 我们就称其为恰当形式。 利用dd=0这一条件,我们就得到所谓的DeRham复形, 由这个复形,就导出了所谓的DeRham上同调, 它就是闭形式生成的向量空间商掉恰当形式以后得到的商空间。楔积法则:d(x∧y)=dx∧y+(-1)^(degx)*x∧dy.此外, 外微分运算还满足牛顿-莱布尼兹公式, 即对区域边界某外微分的积分等于对区域内该外微分的微分的积分。是高斯公式,斯托克斯公式的概括和总结,是单变量微积分中牛顿-莱布尼兹公式在多变量中的推广。2023-06-06 05:14:421
高等数学中可导、可微、可积的关系
这些高等数学的书上都有啊!2023-06-06 05:15:074
数学分析主要讲什么内容
行予沸婶晌看珍刺页犯2023-06-06 05:15:159
美国微积分?
微积分是数学中的一门基础课程,它在理工科和经济学等领域中具有非常重要的地位。对于一些学科,比如工程学、物理学和数学,微积分是必不可少的课程。如果你是数学专业的学生,微积分更是重中之重。那么问题来了,美国大学微积分难吗?这是很难给出一个统一的答案的,因为难度取决于每个学生的实际情况和学习能力。相比起其他初学者可能认为的,微积分的难度并不只是纯粹的数学技巧,更重要的是理解微积分的概念,对于微积分的本质有清晰的认识才能更好的掌握微积分。此外,在美国的大学中,微积分通常分为多个等级,包括单变量微积分和多变量微积分,也可以包括微分方程等课程。难度不同的课程通常涉及不同的概念和技巧,对于学习者而言,需要按部就班地学习和实践。相比起初学者,已经掌握微积分的熟手们都认为,微积分并非一门神秘难懂的课程。其实掌握微积分没有想象中的那么困难,只要在正确的指导下,勤于训练,多思考,多练习,细心、耐心,努力理解课程,积极参加讨论,付出必要的时间,相信你也可以成功地掌握微积分。总的来说,虽然微积分在大部分人印象中是一门较为难的课程,但其实微积分的难度主要取决于个人实际情况和学习能力,只要有恰当的引导,足够的实践,相信大多数人都可以掌握这门重要的课程。2023-06-06 05:16:353
请高手帮我把成绩单翻译成英文,谢谢!
Single variable calculusUniversity EnglishIntroduction to astronomyDynamicsThe outline of Chinese modern historyIdeological and moral cultivation and legal basisComputer program design ( A )Basic physical educationBasic physical body potential energyComputer systemThe art of singingMultivariable calculusLinear algebra ( B1 )University English AdvancedUniversity English reading of seniorHeatUniversity Physics ExperimentElectromagnetics ( A )The basic principle of the Marx doctrineReview of calculusUniversity Physics ExperimentSports option handballComplex variable function ( A )Fundamentals of Electronic Technology ( 1)Probability theory and mathematical statistics ( B )Theoretical mechanics* the culture of Chinese charactersCourse codeClass name called.AchievementCreditHoursTeach teacherStudy periodCategories: compulsory2010-2011 school year the first semester2023-06-06 05:17:232
714高等数学用什么学?
1.第一步,先找到一个切入点去学习,即看一下哪里能学进去或能学懂,从这里开始,开始试着做一些比较简单的题,作对了再找一些同类型的问题计算,这样可以增强学习的信心,并且会做题了,有题可以做了,兴趣也会慢慢养成,人常说,兴趣是最好的老师,从此开始有动力了,然后再找下一个切入点,循环下去,所谓以城市为据点,向农村曼延,最后统一全部的领土2.第二步,跟住现在的知识,上课要认真听课,记笔记,不懂要问,防止再有知识落下3.第三步,抽时间把前面的知识系统的复习一下,把丢掉的东西捡起来2023-06-06 05:17:302
数学分析这门课是什么
数学分析很牛逼,数学类专业的基础课。我们是用了三个学期学了复旦的上下两本数分课本,视频里的单变量,多变量微积分,微积分重点是数分的重点,其实还包括极限,反常积分,级数等等等等等。线性代数和微分方程其实是另外开的课程,叫高等代数,常微分方程,偏微分方程,微分方程数值解等等。2023-06-06 05:17:381
普林斯顿微积分读本的内容简介
《普林斯顿微积分读本》特点:是任何单变量微积分教科书的好伙伴:洋溢着非正式的、娱乐性的但非强求的对话语境风格;丰富的在线视频;大量精选例题(从简单到复杂)提供了一步一步的推理过程;定理和方法的证明以及相关应用的说明实现理论应用于实践的目标;详细探讨了诸如无穷级数这样的难点问题。这样的一本经典著作将易用性与可读性以及内容的深度与数学的严谨完美地结合在一起。对于每一个想要掌握微积分的学生来说,《普林斯顿微积分读本》都是极好的资源。当然,非数学专业的学生也将大大受益。2023-06-06 05:17:441
学新能源难不难?
感觉很难,但是实际操作起来就很简单了,尤其汽车技术这块,大量的实训操作,会积累经验,想学不会都难,如果感兴趣,找个汽车类院校系统学习一下吧。2023-06-06 05:18:004
3000字数学分析感想
函数是现代数学最重要的概念之一,函数描述的是变量之间的关系。微积分起源的学术争论从其诞生时刻就没有停止,有人认为是牛顿发明了微积分,有人则持否定观点。但可以肯定的是微机分已经渗透到现代科学的各个领域。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西…… 欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。2023-06-06 05:18:231
金融学本科的课程都有什么?
什么是金融学?提起金融,人们常会将它与经济、货币和银行联系在一起。实际上,金融的内涵非常广泛,涉及银行、保险、证券市场、国家财政、国际贸易等。金融学理论包括三部分,即货币理论、银行理论、金融理论。金融是指以银行为中心的各种形式的信用活动及在信用基础上组织起来的货币资金的融通。广义的金融,包括与货币有关的一切经济活动,和日常生活息息相关。本科阶段主要学什么?本科金融学的主体课程包括,微观经济学、宏观经济学、会计学、财政学、统计学、计量经济学、货币银行学、国际金融学、金融市场、商业银行经营学、投资银行学、国际贸易、保险学、证券投资学、金融衍生工具、金融经济学、现代货币理论、国际货币制度概论、证券投资学、国际贸易实务等。学习金融的学生在本科阶段除了掌握基本理论知识外,还要接受相关业务的基本训练,比如分析、预测股票和外汇价格的变动,掌握时机买卖证券赚取利润的技巧等。金融学专业一般学制为四年。2023-06-06 05:18:437
词语造句:用微积分造句(约30个)
微积分拼音: wei ji fen 微积分解释: 微分和积分的合称。微分描述物体运动的局部性质,积分描述物体运动的整体性质。例如求运动着的物体在某一瞬间的运动速度就是微分学的问题;由运动物体在各点的瞬间运动速度求物体运动的全部路程就是积分学的问题。微积分在自然科学和工程技术中有广泛的用途。 微积分造句: 1、我们要在微积分学中考虑这些因素。 2、我认为我最终解出了这道微积分题。 3、他也是一位杰出的数学家;,微积分的发明者之一。 4、他将宇宙视为上帝用密文书写的文件——恰如他与莱布尼兹通信时,把自己关于微积分的发现用一种加密的方式书写一样。 5、但是在这段时间里,我更多使用的是离散数学而不是微积分,所以我需要复习才能够找出答案。 6、对于我自己,不能教给他们化学,但是我可以教他们微积分。 7、在美国学校女生在男生旁边学习微积分然后继续学将近有一半以上的学生能拿到数学学位。 8、这些手表的原理大多数比大学微积分都还要复杂,对于它们的来历,你一辈子都了解不完。 9、但与其花时间学瑞典语或者微积分,我们经常还是选择把时间用在老一套的事情上。 10、微积分基本定理,不是曲线积分的,告诉我们,如果对函数的导数积分,就会得回原函数。 11、但是微积分,主要是学习函数的。 12、和牛顿同时发现微积分的人叫什么名字? 13、你或许因此对自己说,趁着我的大脑还没退化,赶紧报名学习史瓦西里文和微积分,还有手风琴班吧! 14、她们在做着微积分,而大多数的男人还在做简单加法。 15、在1738年,丹尼尔试图用微积分来解决一个概率论和赌博理论里的问题,无意间却发现了货币的边际效用递减法则的概念。 16、收到信息的手机声响可能会让他们分心,影响他们解一道微积分数学题或读完课外阅读材料。 17、许多读者都在大学期间接收过微积分课程的训练。 18、斯特曼教系统动力学,他说他的学生虽然非常聪明并受过微积分方面的训练,但没有直观地掌握一个简单而又关键的系统 浴缸。 19、社会学家罗伯特·K·莫顿相信“撞车”在科学理论和发明上非常普遍,他还举出微积分、自然选择、电报、电话和汽车的例子。 20、可能就因为这一经验,使得开放课的试点方案仅仅开放了MIT的三门课程 科学计算机入门,单变量微积分和汉语基础。 21、这本书比其他微积分书要更实用而且更易懂,同时在数学的直观和严格方面保持了绝妙的平衡。 22、牛顿发明了微积分,描绘了万有引力定律,建立第一个反射镜。 23、有一天晚上詹尼佛在写微积分作业,阿曼达则是上网聊天。 24、现在有3000名学生参加科学计算机课程的讨论组,微积分组有2400人,而在汉语基础组中有800人。 25、作为引子,你们可能已经知道了,一元微积分里面的一个小把戏,也就是求隐函数微分法。 26、如果当工程师要求你学过X年微积分,而你在高中从没学过,你就不会决心要当工程师。 27、不要对数学感到气馁,因为你要学会微积分之后才能理解大部分的物理。 28、我指的是,在这种形式下,它和一元微积分的表述是一样的。2023-06-06 05:19:141
高分求大学本科金融学专业从大一到大四的全部课程,按顺序来哟
政治经济学、西方经济学 (英文原版) 、现代商贸与现代物流学、会计学、统计学、计量经济学、国际经济学 (英文原版) 、货币银行学、财政学、发展经济学、企业管理、市场营销、国际贸易实务、经济研究与经济政策、货币银行学、证券投资学、保险学、商业银行业务及中央银行业务等都是金融学的主要课程。主要开始先学经济学基础理论 比如政治经济学、西方经济学 (英文原版)、国际经济学 (英文原版)、会计学、统计学等等……然后大三大四就学专业课 剩下的都是……………… ^_^ 参考资料:dhkeai20032023-06-06 05:19:212
考试大纲中给的样卷想告诉考生什么信息?是难易程度?还是题型?为什么有两个样卷?
题型。难意程度可以在临考15天去出卷中心所在地最好的高中查询。查询的办法是做他们最后的试卷。两个样卷是避免题目的偶然性,让考生了解更多的题型。2023-06-06 05:19:303
大学高数要怎么学好,用自己买练习册吗?
看书!看书!看书!期末考试的内容都是从书上来的,只要把书上的例题、习题都吃透了,考试完全没问题。从每章的概念开始看,理解概念、背公式,然后看例题,看看公式是怎么运用的,一定要确保例题完全看懂,然后做课后题,就算课后题长得跟例题很像,也不要回去看,如果例题完全吃透,那相似的课后题也要会做才行。掌握了例题和课后题,基本的高数就掌握了,考试或是一些简单的应用什么的,完全没问题。如果看例题过程中实在看不懂,可以上大学数学app,上面有各种教材对应的视频课,每道例题课后习题都有讲解。2023-06-06 05:19:4014
经济数学与高等数学的区别 是专升本的工商管理学的经济学
高等数学简介 初等数学研究的是常量,高等数学研究的是变量。 高等数学(也称为微积分,它是几门课程的总称)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。然而,很多学生对怎样才能学好这门课程感到困惑。要想学好高等数学,至少要做到以下四点: 首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。 其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。 第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。 第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。 高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用.微积分的理论是由牛顿和莱布尼茨完成的.(当然在他们之前就已有微积分的应用,但不够系统)无穷小和极限的概念微积分的基本概念的理解有很大难度。 高等数学分为几个部分: 一、函数 极限 连续 二、一元函数微分学 三、一元函数积分学 四、向量代数与空间解析几何 五、多元函数微分学 六、多元函数积分学 七、无穷级数 八、常微分方程 高等数学主要包括 一、 函数与极限分为 常量与变量 函数 函数的简单性态 反函数 初等函数 数列的极限 函数的极限 无穷大量与无穷小量 无穷小量的比较 函数连续性 连续函数的性质及初等函数函数连续性 二、导数与微分 导数的概念 函数的和、差求导法则 函数的积、商求导法则 复合函数求导法则 反函数求导法则 高阶导数 隐函数及其求导法则 函数的微分 三、导数的应用 微分中值定理 未定式问题 函数单调性的判定法 函数的极值及其求法 函数的最大、最小值及其应用 曲线的凹向与拐点 四、不定积分 不定积分的概念及性质 求不定积分的方法 几种特殊函数的积分举例 五、定积分及其应用 定积分的概念 微积分的积分公式 定积分的换元法与分部积分法 广义积分 六、空间解析几何 空间直角坐标系 方向余弦与方向数 平面与空间直线 曲面与空间曲线 八、多元函数的微分学 多元函数概念 二元函数极限及其连续性 偏导数 全微分 多元复合函数的求导法 多元函数的极值 九、多元函数积分学 二重积分的概念及性质 二重积分的计算法 三重积分的概念及其计算法 十、常微分方程 微分方程的基本概念 可分离变量的微分方程及齐次方程 线性微分方程 可降阶的高阶方程 线性微分方程解的结构 二阶常系数齐次线性方程的解法 二阶常系数非齐次线性方程的解法 十一、无穷级数 无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。 包括数项级数、函数项级数(又包括幂级数、Fourier级数;复变函数中的泰勒级数、Laurent(洛朗)级数)。 导数的概念 在学习导数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。 例:设一质点沿x轴运动时,其位置x是时间t的函数,y=f(x) ,求质点在t0的瞬时速度? 我们知道时间从t0有增量△t时,质点的位置有增量 这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为; 若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。 我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度, 即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下: 导数的定义 设函数y=f(x)在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地 函数有增量 若△y与△x之比当△x→0时极限存在,则称这个极限值为y=f(x)在x0处的导数。 记为: 还可记为: 函数f(x)在点x0处存在导数简称函数f(x)在点x0处可导,否则不可导。 若函数f(x)在区间(a,b)内每一点都可导,就称函数f(x)在区间(a,b)内可导。这时函数y=f(x)对于区 间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数, 我们就称这个函数为原来函数y=f(x)的导函数。 注:导数也就是差商的极限 左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。 若极限 存在,我们就称它为函数y=f(x)在x=x0处的左导数。 若极限 存在,我们就称它为函数y=f(x)在x=x0处的右导数。 注:函数y=f(x)在x0处的左右导数存在且相等是函数y=f(x)在x0处的可导的充分必要条件 经济数学概述 经济数学是高等数学的一类,分为微积分、线性代数、概率论与数理统计。 经济数学培养既具有扎实的数学理论基础又具有经济理论基础,且具有较高外语和计算机应用能力,能在金融证券、投资、保险、统计等经济部门和政府部门从事经济分析、经济建模、系统设计工作的经济数学复合型人才。 经济数学是高等职业技术院校经济和管理类专业的核心课程之一。该课程不仅为后继课程提供必备的数学工具,而且是培养经济管理类大学生数学素养和理性思维能力的最重要途径。 学习经济数学的要求 学生应系统学习和掌握数学和应用数学的基础理论和基本方法,接受数学模型、计算机软件方面的基本训练,具有较好的科学素养;系统掌握经济学、管理学的基础理论和基础知识;熟练掌握一门外语,具有较强的外语阅读能力和相当的外语听、说、写、译能力,能利用外语获得专业信息,通过国家大学外语四级水平测试;具有较强的计算机应用能力,能够利用现代信息技术收集数据和查询资料;能够熟练运用数学软件和通过数学建模分析、解决实际问题。 经济数学的主要课程 经济数学主要课程设有数学分析、高等代数、概率论与数理统计、复合函数、实变函数、程序设计、西方经济学、数学模型、计量经济学、金融经济学、金融投资数量分析、风险管理、经济预测与决策、信息系统分析与设计、大系统分析等。该专业方向的学生修满规定的学分,并达到学位授予要求的,授予理学学士学位。 内容简介 该书在不损数学本身的严密性和精确性的前提下,打破了经济学和数学分别教学的常规,将经济学与数学有机结合在一起,不但清晰地表达了相关的数学主题,而且比较完美地将这些主题与经济问题相结合,其侧重点在于教会学生利用数学知识解决相关的经济问题。 全书共分五部分,总计25章。第一部分研究一些基本的数学概念和性质。第二部分主要研究单变量微积分和最优化,从一元函数的连续性谈起,分别研究其导数、微分和最优化。第三部分介绍线性代数的有关知识,包括线性方程组、矩阵、行列式和逆矩阵,以及线性代数前沿问题。第四部分讲述多元计算问题,分别探讨n元函数的计算、n元函数的最优化、约束最优化、比较静态分析以及凹规划和库恩一塔克条件等内容。最后一部分研究积分和动态方法。 全书目录 第Ⅰ篇 引言和基本原理 第1章 引言 第2章 基本原理回顾 第3章 数列、级数和极限 第Ⅱ篇 单变理微积分和最优化 第4章 函数的连续性 第5章 一元函数的导数和微分 第6章 一元函数的最优化 第Ⅲ篇 线性代数 第7章 线性方程组 第8章 矩阵 第9章 行列式和逆矩阵 第10章 线性代数前沿 第Ⅳ篇 多元计算 第11章 n个变量函数的计算 第12章 n个变量函数的最优化 第13章 约束最优化 第14章 比较静态 第15章 凹规划和库恩-塔克条件 第Ⅴ篇 积分和动态方法 第16章 积分 第17章 动态经济数学 第18章 一阶线性差分方程 第19章 一阶非线性差分方程 第20章 二阶线性差分方程 第21章 一阶线性微分方程 第22章 一阶非线性微分方程 第23章 二阶线性微分方程 第24章 微分和差分方程组 第25章 最优控制理论 附录 复数和圆函数 答案 索引 杂志简介 该刊是经济数学理论刊物,主要刊登数量经济学、数理经济学、经济信息论、经济控制论、经济预测与决策和数学理论在经济中应用等方面具有创造性的学术论文,以及经济问题研究中新的数学。求采纳2023-06-06 05:20:081
变量微积分跟ap微积的区别
AP微积分是指美国大学先修课程中的微积分课程,AP是advanced placement的缩写,每年5月份考试(今年刚考完)百度知道2023-06-06 05:20:153
数学分析考研考哪些内容
单变量微积分、多变量微积分、函数项级数、Fourier级数、参变量积分、场论、Gamma函数、Beta函数。 微积分中的各项基本概念、基本运算技巧,包括重积分、线积分、面积分的计算等等。2023-06-06 05:20:233
可微与方向可导是怎么样一个关系呢?
楼上废话过多,且答非所问可微,一定有方向导数!2023-06-06 05:20:303
微积分自学最快多久
全身心投入,每天高效率学习六小时以上的话,达到考研中等分数30天足够了。自学的效率也因人而异,但就我看来,高水平的教职人员是可以大大提高学习效率的,我的单变量,多变量微积分,ode,合起来只有45小时的纯lecture时间。(不包括tutorial/exercise lecture时间)但上完lecture起码能保证掌握定义,性质,基本的例题和方法了。后面的习题时间其实就是内化时间,加强熟练度和基本方法。但是微积分这门课博大精深,分微分和积分,如今该领域的泰斗级人物都不会说自己会微积分。如果自己有数学基础,最好对这方面感兴趣,才能在较短的时间内了解。如果只是想了解,一周可以了解一个大概,如果从应试的角度来看,需要听课加做题大概1个月可以比较熟练,再往深了就要专业人士指导2023-06-06 05:20:361
计算机专业的专升本学生可以报考中科大的天文学研究生吗?
不可以,中国科学技术大学天文学专业只招收物理类、天文类应、往届本科毕业生。中国科学技术大学天文学专业2016硕士研究生招生简章学科专业名称:天文学(专业代码070400)一、报考说明:招收物理类、天文类应、往届本科毕业生 报考条件: 根据文件规定,中国科学技术大学硕士研究生,本次选拔对象,应符合以下条件: 1.在校期间政治思想表现优秀,遵守校纪校规,文明礼貌,未受到任何处分。 2.学历要求:本科(或专科毕业两年),无重考,无重修记录,身心健康。 3.平时必修课程和限选课程学习成绩优秀和综合素质好。 4.以综合考试成绩为录取依据,首先按各专业实考人数划定分数资格线,再按成绩从高到低择优录取。 5.综合考试成绩将在录取前公示7天,录取过程中,如果有排名在录取名额内的考生自愿放弃,在名额外的学生按顺序递补。二、专业介绍:科大天文专业是我国首批批准的包括本科、硕士点、博士点、博士后流动站在内的重要高级人才培养基地。 1986年获得天体物理博士和硕士学位授予权, 1999年被教育部评定为国家重点学科,2008年被教育部评定为国家理科人才培养基地。2008年与上海天文台联合共建中科学星系宇宙学重点实验室。天文专业现包括天体物理一个二级学科专业, 宇宙学,星系和活动星系、高能和相对论天体物理 、天文技术、太阳系外行星等 研究方向。本专业研究生主要就业方向面向天文台和高校的天文研究和教育人才。 四、复试形式:笔试+面试。五、复试内容:复试(笔试)试题覆盖范围如下:1、高等数学(50分)(单变量和多变量微积分、级数和常微分方程);2、科技英语翻译(30分);3、理论物理(40分)(内容含理论力学、统计物理、量子力学等);4、大学实验物理(30分)(《大学物理实验》三级)。六、复试成绩:满分300分,为笔试成绩(满分150分)与面试成绩(满分150分)之和。七、最终成绩:满分600分,为初试成绩(不计政治、外语)与复试成绩之和。八、录取:按最终成绩由高到低排序,提出拟录取名单报批。为保证招生质量,报批人数可小于招生计划。九、调剂:本专业在生源不足的情况下接受调剂。调剂信息将于复试阶段在中国科大研究生招生在线网站(http://yz.ustc.edu.cn )发布。2023-06-06 05:21:171
成都理工大学加试数学考试范围
成都理工大学加试数学考试范围如下:高等数学(50分)(单变量和多变量微积分、级数和常微分方程)实变函数:R^n上的Lebesgue测度;可测函数的概念及其基本性质;可测函数的积分及其Lebesgue积分;积分的控制收敛定理、Levi引理和Fatou引理;乘积测度与Fubini定理;单调函数、有界变差函数和全连续函数。复变函数:可微与解析,Cauchy-Riemann方程,Cauchy积分定理,Cauchy积分公式,最大模原理,Schwarz引理,解析函数的唯一性定理,调和函数,幂级数与Laurent级数,孤立奇点,留数及其应用。抽象代数:群:什么是群,子群和陪集分解,循环群,正规子群、商群的概念和同态基本定理,置换群,群在集合上的作用。环和域:基本概念,环同态(定义、理想、商环、第一同构定理、素环与素域、中国剩余定理、素理想与极大理想),唯一因子分解整环与欧氏整环的概念及主要例子,域上多项式环,域的单代数扩张,有限域初步知识(定理1)。基本要求:重点考察对基本概念的了解及其重要实例,知道最主要的定理及其简单应用,对解题技巧不作高的要求。2023-06-06 05:21:251
泰勒公式什么条件下能用,什么条件下不能用?
结果是1,不能用泰勒公式,其他条件可以。泰勒公式是将一个在x=xu2080处具有n阶导数的函数f(x)利用关于(x-xu2080)的n次多项式来逼近函数的方法。若函数f(x)在包含xu2080的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在xu2080处的泰勒展开式,剩余的Ru2099(x)是泰勒公式的余项,是(x-xu2080)u207f的高阶无穷小。泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。2023-06-06 05:21:321
泰勒公式的研究
泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:http://kxj.7456.net/show/2/57/2023-06-06 05:21:441
用泰勒公式解题怎么解
泰勒公式:f(x)=f(a)+f"(a)/1!*(x-a)+f""(a)/2!*(x-a)^2+...+f(n)(a)/n!*(x-a)^n现在f(x)=1/(1-x),求导得到f"(x)= -1/(1-x)^2 *(-1)=1/(1-x)^2,f""(x)= -2/(1-x)^3 *(-1)=2/(1-x)^3,以此类推得到fn(x)=n! /(1-x)^(n+1)代入a=0,那么f(0)=1,f"(0)=1,fn(0)=n!所以解得f(x)=1+1!/1! *x+2!/2! *x^2+...+n!/n! *x^n扩展资料泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。参考资料百度百科-泰勒公式2023-06-06 05:21:501
梯度系统的作用
梯度系统的作用如下:一、梯度系统的作用主要为磁共振信号进行空间定位。在磁共振成像过程中梯度系统完成了选层编码、频率编码、相位编码,从而对信号进行三维空间定位。梯度场有x、y、z三个方向,在三个方向各有一组线圈。二、其他作用:梯度磁场的切换产生MRI梯度回波信号。用于弥散加权成像,施加扩散敏感梯度场。进行流动液体的流速相位编码。进行流动补偿。扩展资料在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在这点标量场增长最快的方向(当然要比较的话必须固定方向的长度),梯度的绝对值是长度为1的方向中函数最大的增加率。以另一观点来看,由多变量的泰勒展开式可知,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅可比矩阵的一个特殊情况。在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的内积来得到斜度。梯度的数值有时也被称为梯度。2023-06-06 05:22:021
一项数列的通项公式
1-x的n次方展开式公式是:(1-x)^n=Cn0 1^n+Cn1 1^(n-1)(-x)^1+Cn2 1^(n-2)(-x)^2+……+Cn(n-1)x(-x)^(n-1)+Cnn(1)^n(-x)^n。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。以上内容参考 百度百科-二项展开式2023-06-06 05:22:221
泰勒公式是什么?
泰勒公式的使用条件:实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒展开式的重要性体现在以下五个方面:1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。3、泰勒级数可以用来近似计算函数的值,并估计误差。4、证明不等式。5、求待定式的极限。扩展资料泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。参考资料来源:百度百科-泰勒公式2023-06-06 05:22:381
泰勒公式是如何得出的?
和贝努利数有关系其中B(2n)是贝努利数的第2n项。扩展资料:泰勒公式历史发展泰勒简介18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。1701年,泰勒进剑桥大学的圣约翰学院学习。1709年后移居伦敦,获得法学学士学位。1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。1717年,他以泰勒定理求解了数值方程。最后在1731年12月29日于伦敦逝世。泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。发展过程希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。参考资料:百度百科-泰勒公式2023-06-06 05:22:441
微分的加法性质怎么证明?
微分形式的一个优点就是能做外微分 运算。 比如ω=α(x_1,...x_n)dx_{i1}∧dx_{i2}∧...dx_{ir}是一个r次微分形式, 那么dω=dα∧dx_{i1}∧dx_{i2}∧...dx_{ir}. 这就把一个r次微分形式映到了r+1次微分形式。换言之,我们有映射d: A^r(T^*)→A^{r+1}(T^*). 这个映射称为外微分。易知两次外微分的复合等于零, 即dd=0,即poincare(庞加莱)引理. 一个微分形式ω如果满足dω=0, 我们就称其为闭形式。 如果存在另一微分形式γ, 使得ω=dγ, 我们就称其为恰当形式。 利用dd=0这一条件,我们就得到所谓的DeRham复形, 由这个复形,就导出了所谓的DeRham上同调, 它就是闭形式生成的向量空间商掉恰当形式以后得到的商空间。楔积法则:d(x∧y)=dx∧y+(-1)^(degx)*x∧dy.此外, 外微分运算还满足牛顿-莱布尼兹公式, 即对区域边界某外微分的积分等于对区域内该外微分的微分的积分。是高斯公式,斯托克斯公式的概括和总结,是单变量微积分中牛顿-莱布尼兹公式在多变量中的推广。2023-06-06 05:23:141
普林斯顿微积分读本多少页
普林斯顿微积分读本651页。根据查询所示普林斯顿读本一共有651页,《普林斯顿微积分读本》特点:是任何单变量微积分教科书的好伙伴:洋溢着非正式的、娱乐性的但非强求的对话语境风格。丰富的在线视频。大量精选例题(从简单到复杂)提供了一步一步的推理过程。定理和方法的证明以及相关应用的说明实现理论应用于实践的目标。详细探讨了诸如无穷级数这样的难点问题。2023-06-06 05:23:201
大一数学、物理学什么啊?
大一数学主要是微积分,计算机系的有部分的数论的内容,我是物理系的,有一些线性代数的内容大一物理是基础物理,力学,热学,(第一学期),电磁学,光学(第二学期)2023-06-06 05:23:272
中国高中里有学微积分吗?
emmmmmmm高一刚开学一个月就学了2023-06-06 05:23:373
急求泰勒公式的几何意义!!!高手来!
二楼从哪COPY过来这么个性的内容呀。好像占不到边2023-06-06 05:23:594
负梯度向量
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅戈比矩阵的一个特殊情况。 在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。 梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被成为梯度。 在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量 (δf/x)*i+(δf/y)*j 这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y) 类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k 记为grad[f(x,y,z)]2023-06-06 05:24:282
请问什么是负梯度向量?有何意义
在向量微积分中,标量场的梯度是一个向量场.标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率.更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似.在这个意义上,梯度是雅戈比矩阵的一个特殊情况. 在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率. 梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度.可以通过取向量梯度和所研究的方向的点积来得到斜度.梯度的数值有时也被成为梯度. 在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量 (δf/x)*i+(δf/y)*j 这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y) 类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k 记为grad[f(x,y,z)]2023-06-06 05:24:461
求数学家的故事
陈景润不爱走公园,也不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。 有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当自己是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。 理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗? 过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。 陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。 陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。 “丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。 管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。 时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。 陈景润把书收拾好,就往外走去。图书馆里静悄悄的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。 要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢! 他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。 “陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。” 党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。 他打开灯,马上做起那道题目起来2023-06-06 05:24:562
极限和疯狂的英文名各是什么
ultimateinsane2023-06-06 05:25:128
考研梯度可以用坐标表示吗
考研梯度可以用坐标表示的。咱们都知道梯度的本意是一个向量(矢量),表示某一 函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy处该参数为w+dw,则称为该物理参数的梯度,也即该物理参数的变化率。如果参数为速度、浓度、温度或空间,则分别称为速度梯度、浓度梯度、温度梯度或空间梯度。在向量微积分中,标量场的梯度是一个向量场。 标量场中某一点.上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅可比矩阵的特殊情况。在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。梯度这词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被称为梯度。2023-06-06 05:25:271
数学家的故事600字以上
『壹』 数学家的故事70字 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。 1930年,19岁的华罗内庚到清华大学读书容。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。 记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。” 『贰』 数学家的小故事简短 1、陈景润: 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。『叁』 数学家的故事500字 《数学家的故事》是2009年四川大学出版社出版的图书,作者是孙剑。本书通过感人、有趣的数学家的历史事例,以及一些数学史上的重大事件,让学生了解历史上中外杰出的数学家的生平和数学成就,感受前辈大师严谨治学、锲而不舍的探索精神。 『肆』 数学家的名人轶事读后感600字! 你雅中的吧,我也是 这是我提问的得到的答案 我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。 祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。 读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢! 读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察 2.善于动手 3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破! 行不? 『伍』 十个数学家的小故事 说一个重量级的人物,他叫做冯·诺依曼,曾经参加过原子弹的制造,构筑了现代计算机的架构,进行了第一次可靠的现代数值气象预报。他也是二十世纪最杰出的数学家之一,他记忆力超群,可以一字不差地张口引用15年前度过的《大英网络全书》或《双城记》,同时他的心算能力也很厉害,下面我们通过几个故事来更进一步地了解他。 但这样有趣并且对世界有重要贡献的人,却英年早逝,与1957年在美国去世,享年54岁。我们如今在使用计算机,看天气预报时,一定要记得背后是这些数学家和科学家的贡献,他们让世界更美好。 『陆』 6个数学家的故事(最好不超过50个字) 数学陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。数学家鲁道夫的小故事 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。数学家雅谷伯努利的小故事 瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 数学家雅谷伯努利的小故事 瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 - 『柒』 急求数学家故事、数学史!!!!!一篇不少于600字,需要五篇 阿基米德(前287年—前212年),伟大的古希腊哲学家、数学家、物理学 阿基米德 家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手。 阿基米德出生在希腊西西里岛东南端的叙拉古城。在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起。阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所。 阿基米德的父亲是天文学家和数学家,所以他从小受家庭影响,十分喜爱数学。大概在他九岁时,父亲送他到埃及的亚历山大城念书,亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里德,因此奠定了他日后从事科学研究的基础。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 芝诺生活在古代希腊的埃利亚城邦.他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友.关于他的生平,缺少可靠的文字记载.柏拉图在他的对话《巴门尼德》篇中,记叙了芝诺和巴门尼德于公元前5世纪中叶去雅典的一次访问.其中说:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂.那时芝诺约40岁,身材魁梧而美观,人家说他已变成巴门尼德所钟爱的了。”按照以后的 芝诺 希腊著作家们的意见,这次访问乃是柏拉图的虚构.然而柏拉图在书中记述的芝诺的观点,却被普遍认为是相当准确的.据信芝诺为巴门尼德的“存在论”辩护.但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一"的假设得出更可笑的结果。”他用同样的方法,巧妙地构想出一些关于运动的论点.他的这些议论,就是所谓“芝诺悖论”.芝诺有一本著作《论自然》.在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世.”公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出了40个各不相同的悖论.芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯(Simplici-us)为《物理学》作的注释是了解芝诺悖论的主要依据,此外还有少量零星残篇可提供佐证.现存的芝诺悖论至少有 8个,其中关于运动的4个悖论尤为著名. 关于芝诺之死,有一则广为流传但情节说法不一的故事说,芝诺因蓄谋反对埃利亚(另一说为叙拉古)的僭主,而被拘捕、拷打,直至处死. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 伯特兰·亚瑟·威廉·罗素(1872—1970),英国哲学家、数学家、逻辑学家。英国剑桥大学三一学院毕业后留校任教。1920年曾来中国讲学。1938—1944年在美国芝加哥大学、加利福尼亚大学讲学。1950年获诺贝尔文学奖。在哲学上,早期为新实在论者,20世纪初提出逻辑原子主义和中元一元论学说。在数学上,从事过数理逻辑和数学基础的研究。以他命名的“罗素悖论”曾对20世纪的数学基础发生过重大影响,其与怀特海的巨著《数学原理》中提出的逻辑类型论成功的解决了包括罗素悖论在内的不少悖论,并且成为人类数学和数理逻辑历史上里程碑式的著作,正是这本巨著使罗素获得了崇高的声誉。在教育上,主张自由教育,认为教育的基本目的应该是培养“活力、勇气、敏感、智慧”四种品质。在政治上,反对侵略战争,倡导和平主义。重要著作有《哲学原理》、《哲学问题》、《心的分析》、《物的分析》、《西方哲学史》、《论教育》等。 人物生平 伯特兰·亚瑟·威廉·罗素(1872年——1970年),20世纪著名的资产阶级思想家和社会活动家,一生著作达40余部,论文或其他文章更多。他在多方面的建树深刻地影响了西方哲学。 孤独的童年 1872年5月18日,罗素出生于英国蒙茅斯郡特雷莱克一个贵族家庭。他的祖父约翰·罗素伯爵两次出任首相,是争取1832年英国改革法案通过的领导人。罗素两岁时他的母亲死去,大约一年后他的父亲和姐姐也谢世了。祖父祖母自愿承担了抚养孩子的责任。罗素的祖母具有自由主义政治观点,常教导罗素要反思自己的思想和行为。祖母是一个虔诚的清教徒,严格简朴的家教使得罗素备受压抑,他每天早上要用冷水沐浴,大人从来不给水果,也从来喝不到啤酒,因此少年时代的罗素性格内向,他没有被送到学校读书,从小由外籍保姆和家庭教师照顾,学习德文,法文,意大利文。罗素的祖父有一个藏书极为丰富的图书馆,他经常藏身其中广泛吸收文学、历史、地理等方面的知识,他有勤于思考的习惯,这无疑受其祖母的影响。他自己也承认,从五岁起他就感到生活的无聊而常常独步于园中,有时还因厌倦而有自杀的念头,罗素的童年生活为他的孤僻、高傲、多疑、易变的性格以及特有的依赖性思想形成提供了孽生的神经因子和原始土壤。 罗素11岁时,跟着他的哥哥学习欧氏几何学,当时他只能接受定义,却怀疑公理的可靠性。这种怀疑决定了罗素哲学生涯的风格和目标,即以怀疑主义和谨慎的风格,探求“我们能知道多少以及具有何种程度”的确定性和可疑性。 1890年10月,罗素考入剑桥大学三一学院,从而进入空气清新、思想活跃的教育园地。然而老师对他影响不大,倒是与同学的交往使他受益颇深。不久,他同学校的著名人物怀特海、莫尔、麦克塔格特、经济学家凯恩斯等人结识,很快他便成为他们中间最受欢迎的一员。在第三学年时,罗素虽以优异成绩通过学位考试,却发誓再也不念这种只注重技巧而不重视基础理论证明的数学了,改学哲学。他立志要像黑格尔那样,建立一套哲学体系,献身于哲学事业。 罗素大学刚毕业时,深信黑格尔、康德的哲学。1893年他写了数学哲学论文《论几何学基础》,试图修补康德所谓的时空形式是先天综合判断的理论。这使他获得了剑桥大学研究员的资格。 当时德国的数学理论非常先进,正酝酿着一次根本性的变革。当罗素深入掌握了这些理论之后,他断然放弃自己推崇已久的唯心主义观点,转向实在论,决心寻求一种正确的数学理论。 1900年7月,遇到象征逻辑创始人皮诺。罗素读了皮诺的著作,他感到许多问题突然都有了答案。同年10月,他同怀特海合写《数学原理》,并于1910年、1911年、1912年分三大卷出版。这部书在逻辑发展史上是划时代的。从此,逻辑脱离哲学而独立,后来德国的大学就把数理逻辑归入数学系。凡此都证明了罗素的特殊地位。 罗素发现人们力图用逻辑学为数学奠定理论基础的过程中,有一个常常用来说明其他概念的基础概念“总类”是自相矛盾的,由此他建立了“悖论”学说,又称“罗素悖论”。为了证实“罗素悖论”,许多数学家和逻辑学家提出各种理论方案,都解释不通。罗素本人也中断《数学原理》的写作,对此作进一步研究。后来他提出“类型论”来解释这种现象。“类型论”的影响也很大,它促使数学家认识某些词语和语义研究的重要性,也孕育着罗素本人的另一种哲学思想,即逻辑原子主义的原理。 罗素的逻辑原子主义的基本论点是,世界是由一些简单的特殊事实构成的,它们只有简单的性质和相互之间的简单的关系,因此了解任何事物或主题的实质的途径是分析,直到无可再分析的“逻辑原子”为止。逻辑原子并不是小粒的物质,而是构成事物的所谓观念。罗素的这一套理论,对20年代中叶出现的维也纳学派以及30年代出现的逻辑语义学有着巨大的影响。 罗素哲学思想中比较重要的,是他的“中立一元论”。大意是构成世界的材料既不是纯粹的心,又不是纯粹的物,也不是心物的二元对立,而是一种非心非物、对于心物都取中立态度的东西。这种中立的事物有时指事件,有时又指感官和材料,这种“世界材料”是构成心物最原始的东西。这些观点都体现在他1921年完成的《物的分析》和《心的分析》两部著作中。 罗素一向热衷于政治理论的探讨,并积极参与各种政治活动。早在1895年,他第一次结婚之后,同妻子一起旅游了欧洲大陆,他研究了经济和德国社会的民主,并盛赞《 *** 宣言》和三大卷《资本论》都是极富文采的伟大名著。当时他与社会民主党领袖、马克思主义者倍倍尔、李卜克内西都有往来。第一次世界大战期间,他积极从事反战活动。他参加了禁止征兵协会,发表了一系列呼吁和平的演讲,对拒绝参加罪恶战争的人给予真诚帮助。1916年因为撰写反战传单被罚款100英镑,由于其拒付,法庭就拍卖了他在剑桥大学的图书作抵押。随后三一学院也解除了他的教职。1918年,他又给反战报纸写社论,因“侮辱同盟国”而被监禁6个月。鉴于其名声,他被判决在布里克斯顿监狱中的一个小屋中写作和研究。战争结束后,罗素访问了苏联,会见了列宁、托洛茨基和高尔基,他对共产主义者信仰的目标表示同情,但也对苏联的政治和社会生活方式表示忧虑。1920年8月,罗素访问了中国。他一贯同情被压迫民族。在英布战争中,他站在布尔人一边,为此他在英国贵族中极为孤立 波恩哈德·黎曼德国数学家,物理学家 。1826年9月17日生于汉诺威布列斯伦茨,1866年7月20日卒于意大利塞那斯加 。1846年入格丁根大学读神学与哲学,后来转学数学,在大学期间有两年去柏林大学就读 ,受到 C.G.J.雅可比和P.G.L.狄利克雷的影响。1849年回格丁根。1851 年获博士学位 。1854 年成为格丁根大学的讲师,1859年接替狄利克雷成为教授。 1851 年论证 了复变 函数 可导的 必要充分 条件( 即柯西-黎曼方程) 。借助狄利克雷原理阐述了黎曼映射定理 ,成为函数的几何理论的基础。1853年定义了黎曼积分并研究了三角级数收敛的准则。1854年发扬了高斯关于曲面的微分几何研究,提出用流形的概念理解空间的实质,用微分弧长度的平方所确定的正定二次型理解度量,建立了黎曼空间的概念,把欧氏几何、非欧几何包进了他的体系之中。1857年发表的关于阿贝尔函数的研究论文,引出黎曼曲面的概念 ,将阿贝尔积分与阿贝尔函数的理论带到新的转折点并做系统的研究。其中对黎曼曲面从拓扑、分析、代数几何各角度作了深入研究。创造了一系列对代数拓扑发展影响深远的概念,阐明了后来为G.罗赫所补足的黎曼-罗赫定理。 编辑本段主要成果 在1858年发表的关于素数分布的论文中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他提出著名的黎曼猜想至今仍未解决。另外,他对偏微分方程及其在物理学中的应用有重大贡献。甚至对物理学本身,如对热学、电磁非超距作用和激波理论等也作出重要贡献。黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。黎曼首先提出用复变函数论特别是用ζ函数研究数论的新思想和新方法,开创了解析数论的新时期,并对单复变函数论的发展有深刻的影响 。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Brook Taylor 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年12月29日于伦敦逝世。 泰勒的主要著作 泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的著名定理--泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作麦克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。 1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用“没影点”概念, 这对摄影测量制图学之发展有一定影响。另外,还撰有哲学遗作,发表于1793年 『捌』 求5个数学家的故事,一个故事100字左右,不用太长。 ①蒲丰:一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。 ②数学魔术家:1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。 运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。 ③工作到最后一天的华罗庚:华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。 他对数论有很深的研究,得出了著名的华氏定理。记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。④笛卡儿:法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论。《几何学》确定了笛卡儿在数学史上的地位。 ⑤韦达:法国数学家。年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为 *** 破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步。 韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式。 ⑥高斯 :高斯在小学二年级的时候,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,所以老师觉得出了他的题目,学生肯定是要算很久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情。 但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55。老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、…… 又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。2023-06-06 05:25:341
高数下从第几章开始
在大学高等数学中,一般从微积分的基础概念开始,也就是在第一章中介绍的。在微积分的基础上,第二章会涉及到微分和导数的概念,第三章则讲解积分和不定积分的概念。第四章到第七章涉及到微积分的应用,包括定积分、微分方程、无穷级数和多元函数微积分。因此,高等数学课程一般是从第一章开始学习微积分知识。2023-06-06 05:25:419
高等数学重积分的内容
高等数学重积分的内容:二重积分的定义及其几何与物理意义、利用几何意义计算二重积分、二重积分的基本性质、利用直角坐标计算二重积分的基本方法、利用轮换对称性计算二重积分、利用极坐标计算二重积分的基本方法、极坐标系与直角坐标系下二次积分的相互转化。计算三重积分的投影法和截面法、三重积分换元公式简介及柱坐标系与球坐标系复习、利用球坐标计算三重积分的方法和典型例题、利用重积分计算立体体积、利用二重积分计算曲面面积、利用二重积分计算平面图形的面积、利用重积分计算物体对质点的引力、质心的概念及质心的坐标公式。扩展资料:多重积分问题的解决在多数情况下依赖于将多重积分转化为一系列单变量积分,而其中每个单变量积分都是直接可解的。对于三重积分, 可以把被积函数看作密度,则其为空间中一立体的质量,想象一下大家切土豆丝,相当于把三重积分转化为了三个"定积分"的累次积分;再想象一下切片面包,相当于把三重积分转化为了一个“定积分”和一个“二重积分”的累次积分。对于二重积分, 可以把被积函数看做密度,则其为平面区域的质量。想象一下大家常见的炒饼丝,可以看到这样就把二重积分转化成了两个"定积分"的累次积分了。参考资料来源:百度百科-多重积分2023-06-06 05:26:021