汉邦问答 / 问答 / 问答详情

勾股定理是什么?

2023-05-25 12:15:40
NerveM

勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是

a^2+b^2=c^2。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法:直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA" ≌△AA"C 。

过C向A""B""引垂线,交AB于C",交A""B""于C""。

△ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。

于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等;

⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)2

= (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED

= ab+ ba+ c2

= (2ab+c2)。 ②

比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ? BA, ①

由△CAD∽△BAC可得AC2=AD ? AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等。

【附录】

一、【《周髀算经》简介】

《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。

《周髀算经》使用了相当繁复的分数算法和开平方法。

二、【伽菲尔德证明勾股定理的故事】

1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。

于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

wpBeta
勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

详见

http://bk.baidu.com/view/366.htm
瑞瑞爱吃桃

验证推导

青朱出入图

赵爽勾股圆方图证...

毕达哥拉斯定律

欧几里得的证法

几何原理

主要意义

推广

常见勾股数

勾股定理-几何定理

勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^+b^=c^ 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。 

中文名称:商高定理、毕达哥拉斯定理

外文名称:Pythagorean theorem

提出时间:公元前550年

适用领域范围:数学,几何学

表达式:a²+b²=c²

记载著作:《九章算术》、《周髀算经》 请采纳,谢谢

左迁

勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等於两条直角边边长平方之和。

Chen

直角三角形两直角边的平方和等于斜边的平方~~~~~~~~

拌三丝

三角形中勾三股四玄五

勾股定理是啥?

勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。目前初二学生学,教材的证明方法采用赵爽弦图。  勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。  勾股定理指出:  直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。  也就是说,  设直角三角形两直角边为a和b,斜边为c,那么  a的平方+b的平方=c的平方 a^2+b^2=c^2  勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。  勾股定理其实是余弦定理的一种特殊形式。  我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。
2023-05-25 08:28:101

勾股定理是什么

。。
2023-05-25 08:28:545

什么是勾股定律?

勾股定理:在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a+b=c;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a+b=c,那么这个三角形是直角三角形。(称勾股定理的逆定理)所以对角线是√(根号)7的平方+5的平方=√74
2023-05-25 08:31:354

勾股定理的原理是什么?

勾股定理讲的就是直角三角形,知道任意两条边求第三边的边长公式。设定直角边分别是a和b,斜边为c。a×a+b×b=c×c,讲勾股定理时我还记得举例两个直角边分别是3和4求斜边3×3+4×4=c²c²=9+16=25c=5同样如果知道一条直角边和斜边求另一边就是b²=c²-a²b²=5²-3²=25-9=16b=4
2023-05-25 08:32:031

勾股定理的公式是什么?

sin²a+cos²a是勾股定理公式,sin²+cos²=1。在直角三角形ABC中,sinA=a/c,cosA=b/c,sin²+cos²=a²/c²+b²/c²,根据勾股定理a²+b²=c²,所以sin²+cos²=1。意义1、勾股定理的证明是论证几何的发端。2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
2023-05-25 08:32:111

勾股定理定义

勾股定理的解释[Pythagorean theorem] 《周髀算经》 记载 :西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是 直角 三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。 中国 古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到 公元 前六世纪的毕达哥拉斯时,才发现这 一定 理 详细解释 在直角三角形中,两直角边平方的和等于斜边的平方。在中国古代,称直角三角形中较短的一条直角边为勾,较长的一条直角边为股,斜边为弦,定理因而得名。古代算书 《周髀算经》 所载商高的谈话中曾提出勾股定理的特例“勾三股四弦五”,故又称“商高定理”。在西方,它被称为“毕达哥拉斯定理”。 词语分解 勾股的解释 直角三角形夹直角的两边,短边为“勾”,长边为“股”;在立竿测太阳高度时,日影为勾,标竿为股。广义说法,包括勾股定理的 研究 和应用。参阅《周髀算经》卷上。 定理的解释 通过理论证明能用来作为 原则 或 规律 的命题或公式详细解释.确定的法则或 道理 。《韩非子·解老》:“凡理者, 方圆 、短长、麤靡、坚脆之分也。故理定而后可得道也。故定理有存亡,有死生,有盛衰。夫物 之一 存一亡,乍
2023-05-25 08:32:401

“勾股定理”是什么

勾三股四弦五
2023-05-25 08:32:495

什么是勾股定理

晕 你说股是什么!有还有条勾(沟)
2023-05-25 08:33:069

什么是勾股定理,怎么解释

三角形的三边长度存在一个关系,两条较短边长的平方和等于第三边边长平方
2023-05-25 08:33:345

勾股定理是什么意思?

勾3股4玄5,三角函数
2023-05-25 08:34:142

勾股定理公式是什么

a方+b方=c方
2023-05-25 08:34:234

勾股定理公式大全及证明方法

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。接下来给大家分享勾股定理公式及证明方法。 勾股定理的公式 基本公式 在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a 2 +b 2 =c 2 。 完全公式 a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2① 其中m≥3 (1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子} (2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子} 常用公式 (1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。 (2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。 (3)(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。 (4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。 欧几里得证明勾股定理的方法 设△ABC为一直角三角形,其直角为∠CAB。 其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。 分别连接CF、AD,形成△BCF、△BDA。 ∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。 ∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。 因为AB=FB,BD=BC,所以△ABD≌△FBC。 因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。 因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。 因此四边形BDLK=BAGF=AB²。 同理可证,四边形CKLE=ACIH=AC²。 把这两个结果相加,AB²+AC²=BD×BK+KL×KC 由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC 由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
2023-05-25 08:34:381

数学勾股定理是什么?

2023-05-25 08:34:465

勾股定理?

答:勾的平方加股的平方等于玄的平方
2023-05-25 08:35:423

勾股定理公式计算图解

勾股定理公式:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²。勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组呈a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。勾股定理的主要意义:1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。勾股定理在几何学中的实际应用非常广泛。
2023-05-25 08:36:101

勾股定理怎么做?

 
2023-05-25 08:37:202

什么是勾股定理

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。定理用途已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
2023-05-25 08:37:331

勾股定理是什么意思?

数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a²+b²=c²
2023-05-25 08:38:133

勾股定理的历史

中国周髀算经就有记载,外国毕达哥拉斯定理
2023-05-25 08:38:228

余弦定理公式是什么:)

 
2023-05-25 08:38:574

余弦定理是什么

看图片
2023-05-25 08:39:183

余弦定理是什么?

sinα=1/ cscα,cos与sin是互为倒数的关系。在古代的说法当中,正弦是勾与弦的比例。 古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。 股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。正弦是∠α(非直角)的对边与斜边的比,余弦是∠α(非直角)的邻边与斜边的比。勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。扩展资料余弦定理余弦定理亦称第二余弦定理。关于三角形边角关系的重要定理之一。该定理断言:三角形任一边的平方等于其他两边平方和减去这两边与它们夹角的余弦的积的两倍。若a、b、c分别表示∆ABC中A、B、C的对边,则余弦定理可表述为:余弦定理还可以用以下形式表达:参考资料来源:百度百科-余弦百度百科-sin
2023-05-25 08:39:501

余弦定理公式是什么?

余弦定理:cos A=(b2+c2-a2)/2bc。正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值。判定定理判定定理一 两根判别法若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。①若m(c1,c2)=2,则有两解;②若m(c1,c2)=1,则有一解;③若m(c1,c2)=0,则有零解(即无解)。
2023-05-25 08:40:261

余弦定理公式是什么?

余弦定理表达式1:同理,也可描述为:余弦定理表达式2:余弦定理表达式3(角元形式)在任意△ABC中,做AD⊥BC∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac
2023-05-25 08:40:431

余弦定理。

余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。 若三边为a,b,c 三角为A,B,C, 则余弦定理表达式1 c^2=a^2+b^2-2abcosC b^2=a^2+c^2-2accosB a^2=b^2+c^2-2bccosA勾股定理是余弦定理的特例,当C为90°时,cosC=0 ,余弦定理可简化为 c^2=a^2+b^2 ,即勾股定理。余弦定理表达式2 cosC=(a^2+b^2-c^2)/(2ab) cosB=(a^2+c^2-b^2)/(2ac) cosA=(b^2+c^2-a^2)/(2bc)。
2023-05-25 08:41:242

正余弦定理公式

高中阶段三角形内角和为180度!这个在正余弦定理证明和计算中,有着至关重要的作用,尤其是:用正余弦定理证明:三角形中,cosA/a+cosB/b+cosC/c=(a^2+b^2+c^2)/2abc,就是很好的说明,加上三角形的外接圆,圆的离心率个双曲线,都可以加注到其中,sinA=sin(B+C)又夹杂了象限问题,如果是老师,可以没事引导学生,把这几个方面相结合,得出很多简算公式,可以没事拿来练习,这对高考时的选择填空,以及大题的检查,都很是方便!
2023-05-25 08:41:333

余弦的公式是什么?

余弦的公式是:半角公式:cos(A/2)=±√((1+cosA)/2)倍角公式:Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1两角和与差公式:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB积化和差公式:cosAcosB=/2cosAsinB=/2和差化积公式:cosA+cosB=2coscoscosA-cosB=-2sinsin余弦定理的推导过程:平面三角形证法:在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB在Rt△ACD中,b²=AD²+DC²=(c*sinB)²+(a-c*cosB)²=c²sin²B+a²-2ac*cosB+c²cos²B=c²(sin²B+cos²B)+a²-2ac*cosB=c²+a²-2ac*cosB
2023-05-25 08:41:481

三角形余弦定理公式是什么?

余弦定理公式:cosA=(b²+c²-a²)/2bc,cosA=邻边比斜边。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理。运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题。余弦定理性质对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c三角为A,B,C,则满足性质:a^2=b^2+c^2-2·b·c·cosAb^2=a^2+c^2-2·a·c·cosBc^2=a^2+b^2-2·a·b·cosCcosC=(a^2+b^2-c^2)/(2·a·b)cosB=(a^2+c^2-b^2)/(2·a·c)cosA=(c^2+b^2-a^2)/(2·b·c)(物理力学方面的平行四边形定则以及电学方面正弦电路向量分析也会用到)第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
2023-05-25 08:42:021

余弦定理是什么

余弦定理是:三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。若在三角形ABC中,a,b,c分别为角A、角B、角C的对边,则余弦定理可用下列等式表示:a^2=b^2+c^2--2bccosA,b^2=a^2+c^2--2accosB,c^2=a^2+b^2--2abcosC。余弦定理的应用:一。已知两边,求第三边。二。已知三边,求三个角。如果本题有什么不明白可以追问,如果满意请点击右下角“采纳为满意回答”如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。O(∩_∩)O,记得采纳,互相帮助祝学习进步!
2023-05-25 08:42:281

余弦定理怎么用?

知道三角形的三条边可以通过余弦定理求解三个角的度数。举例说明如下:在三角形ABC中,设AB=c,BC=a,CA=b,且a、b、c所对的内角分别是A、B、C,则:cosA=[b²+c²-a²]/(2bc)cosB=[a²+c²-b²]/(2ac)cosC=[a²+b²-c²]/(2ab)扩展资料:余弦定理是解三角形中的一个重要定理,可应用于以下三种需求:1.当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。2.当已知三角形的三边,可以由余弦定理得到三角形的三个内角。3.当已知三角形的三边,可以由余弦定理得到三角形的面积。参考资料:百度百科-余弦定理
2023-05-25 08:42:351

正弦定理和余弦定理的所有公式

1 正弦定理、三角形面积公式   正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于该三角形外接圆的直径,即:a/sinA=b/sinB=c/sinC=2R.   面积公式:S△=1/2bcsinA=1/2absinC=1/2acsinB.    1.正弦定理的变形及应用   变形:(1)a=2RsinA,b=2RsinB,c=2RsinC   (2)sinA∶sinB∶sinC=a∶b∶c   (3)sinA=a/2R,sinB=b/2R,sinC=c/2R.   应用(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题:   a.已知两角和任一边,求其他两边和一角.   b.已知两边和其中一边的对角,求另一边的对角.   一般地,已知两边和其中一边的对角解三角形,有两解、一解.   (2)正弦定理,可以用来判断三角形的形状.其主要功能是实现三角形中边角关系转化.例如:在判断三角形形状时,经常把a、b、c分别用2RsinA、2RsinB、2RsinC来代替.    2.余弦定理   在△ABC中,有a2=b2+c2-2bccosA;b2=c2+a2-2accosB;c2=a2+b2-2abcosC;   变形公式:cosA=b2+c2-a2/2bc,cosB=c2+a2-b2/2ac,cosC=a2+b2-c2/2ab   在三角形中,我们把三条边(a、b、c)和三个内角(A、B、C)称为六个基本元素,只要已知其中的三个元素(至少一个是边),便可以求出其余的三个未知元素(可能有两解、一解、无解),这个过程叫做解三角形,余弦定理的主要作用是解斜三角形.    3.解三角形问题时,须注意的三角关系式:A+B+C=π   0
2023-05-25 08:43:001

余弦定理公式是什么?

余弦定理表达式1:同理,也可描述为:余弦定理表达式2:余弦定理表达式3(角元形式)扩展资料:余弦定理证明:1、平面三角形证法在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB在Rt△ACD中,b²=AD²+DC²=(c*sinB)²+(a-c*cosB)²=c²sin²B+a²-2ac*cosB+c²cos²B=c²(sin²B+cos²B)+a²-2ac*cosB=c²+a²-2ac*cosB2、平面向量证法有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b)∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|cos(π-θ)又∵cos(π-θ)=-cosθ(诱导公式)∴c²=a²+b²-2|a||b|cosθ此即c²=a²+b²-2abcosC即cosC=(a2+b2-c2)/2*a*b
2023-05-25 08:43:081

余弦定理的推导过程

推导过程:设 △ABC riangle ABC 中, 。AB→=c,BC→=a,AC→=b。vec{AB}=c,vec{BC}=a, vec{AC}=b。 过 BB 点作 ACAC 的垂线,垂足为 DD ,如果 DD 在 ACAC 内部,则 BDBD 的长度为 asin⁡Casin C , DCDC 的长度为 acos⁡Cacos C , ADAD 的长度为 b−acos⁡Cb-a cos C 。根据勾股定理:c2=(asin⁡C)2+(b−acos⁡C)2c^2=(asin C)^2+(b-acos C)^2c2=a2sin2⁡C+b2−2abcos⁡C+a2cos2⁡Cc^2=a^2sin ^2C+b^2-2abcos C+a^2cos^2 Cc2=a2(sin2⁡C+cos2⁡C)+b2−2abcos⁡Cc^2=a^2(sin ^2C+cos^2C)+b^2-2abcos Cc2=a2+b2−2abcos⁡Cc^2=a^2+b^2-2abcos C如果 DD 在 ACAC 的延长线上,证明是类似的。同理可以得到其他的等式。
2023-05-25 08:43:161

余弦定理公式?

余弦定理指的是三角形任何一边的平方等于其它两边平方的和,减去这两边与它们夹角的余弦的积的2倍。
2023-05-25 08:43:402

余弦的定义公式是什么?

sin与cos的转换公式是二倍角与半角的关系,转换公式如下:1、二倍角转化公式:sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2、由二倍角公式,可以继续推导出半角转化公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2cos公式的其他资料:它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角。(2)已知两边和它们的夹角,求第三边和其他两个角。
2023-05-25 08:43:472

反三角函数怎么念

反三角函数分为反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数。反正弦函数,即arcsin x。反正弦函数,是正弦函数y=sin x在(-π/2,π/2)上的反函数。念做“a(第四声),k(第三声),sai(第四声)。(arc sine)反余弦函数,即arccos x。反余弦函数,是余弦函数y=cos x在(0,π)上的反函数。念做a(第四声),k(第三声),ko(第四声),sai(第四声)。(arc cosine)反正切函数,即arctan x。反正切函数,是正切函数y=tan x在(-π/2,π/2)上的反函数。念做a(第四声),k(第三声),tan(第四声),jin(第三声),t(第三声)。(arc tangent)反正割函数,即arcsec x。反正割函数,是正割函数y=sec x在(0,π/2)∪(π/2,π)上的反函数。念做a(第四声),k(第三声),si(第四声)(英文发音),ken(第三声),t(第三声)。(arc secant)反余割函数,即arccsc x。反余割函数,是余割函数y=csc x在(-π/2,0)∪(0,π/2)上的反函数。念做a(第四声),k(第三声),ko(第一声),si(第四声)(英文发音),ken(第三声),t(第三声)。(arc cosecant)读时,不必太过刻意地读,自然地读。
2023-05-25 08:00:195

反三角函数怎么读?

前面的arc读“阿科”,这只是它的读音,这肯定不是这样写,然后后面的就按照原来的读就行了
2023-05-25 08:00:043

反三角函数公式大全

反三角函数公式大全有:1、arcsin(-x)=-arcsinx。2、arccos(-x)=π-arccosx。3、arctan(-x)=-arctanx。4、arccot(-x)=π-arccotx。5、arcsinx+arccosx=π/2=arctanx+arccotx。6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x。8、当x∈〔0,π〕,arccos(cosx)=x。9、x∈(—π/2,π/2),arctan(tanx)=x。10、x∈(0,π),arccot(cotx)=x。11、x〉0,arctanx=arctan1/x。12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。反三角函数的定义反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
2023-05-25 07:59:441

反三角函数怎么用

arc(cos3/5)的结果计算错误,角度应该是53.13或者306.87
2023-05-25 07:58:517

高中物理的反三角函数是怎样算的及公式

[编辑本段]数学术语   反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。  反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).   (1)正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsin x表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。  (2)余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。arccos x表示一个余弦值为x的角,该角的范围在[0,π]区间内。  (3)正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。arctan x表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。  反三角函数主要是三个:   y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;   y=arccos(x),定义域[-1,1] , 值域[0,π],图象用兰色线条;   y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;   sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx  证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得   其他几个用类似方法可得   cos(arccos x)=x, arccos(-x)=π-arccos x  tan(arctan x)=x, arctan(-x)=-arctanx  反三角函数其他公式  arcsin(-x)=-arcsinx   arccos(-x)=π-arccosx   arctan(-x)=-arctanx   arccot(-x)=π-arccotx   arcsinx+arccosx=π/2=arctanx+arccotx   sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)   当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x   当x∈〔0,π〕,arccos(cosx)=x   x∈(—π/2,π/2),arctan(tanx)=x   x∈(0,π),arccot(cotx)=x   x〉0,arctanx=π/2-arctan1/x,arccotx类似   若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
2023-05-25 07:58:411

反三角函数怎么求

反三角函数:arcsin(-x)=-arcsinx。arccos(-x)=π-arccosx。arctan(-x)=-arctanx。arccot(-x)=π-arccotx。arcsinx+arccosx=π/2=arctanx+arccotx。sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x。当x∈〔0,π〕,arccos(cosx)=x。x∈(—π/2,π/2),arctan(tanx)=x。
2023-05-25 07:58:181

三角函数的反函数

三角函数的反函数如下:反三角函数是一种基本初等函数,它是反正弦、反余弦、反正切、反余切、反正割、反余割这些函数的统称。各自表示其正弦,余弦、正切、余切、正割,余割为x的角。三角函数的三角函数是个多值函数,因为它不满足一个自变量对应一个函数的要求,其图像与其原函数关于函数y=x对称,欧拉提出反三角函数的概念,并且首先是用了“arc+函数名”的形式来表示反三角函数。
2023-05-25 07:58:111

反三角函数值域是什么?

反三角函数值域是[-π/2,π/2]。反三角函数是三角函数的反函数,以反正弦函数为例,反正弦函数是正弦函数y=sinx在[-π/2,π/2]上的反函数,其定义域为[-1,1],值域为[-π/2,π/2]。反三角函数的介绍:反三角函数指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。1、反正弦函数正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。2、反余弦函数余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。3、反正切函数正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
2023-05-25 07:57:561

反三角函数基本公式

反三角函数公式大全有:1、arcsin(-x)=-arcsinx。2、arccos(-x)=π-arccosx。3、arctan(-x)=-arctanx。4、arccot(-x)=π-arccotx。5、arcsinx+arccosx=π/2=arctanx+arccotx。6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x。8、当x∈〔0,π〕,arccos(cosx)=x。9、x∈(—π/2,π/2),arctan(tanx)=x。10、x∈(0,π),arccot(cotx)=x。11、x〉0,arctanx=arctan1/x。12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。反三角函数的定义反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
2023-05-25 07:57:391

反三角函数公式有那些?

反三角函数公式表:1、arcsin(-x)=-arcsinx2、arccos(-x)=π-arccosx3、arctan(-x)=-arctanx4、arccot(-x)=π-arccotx5、arcsinx+arccosx=π/2=arctanx+arccotx6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x8、当x∈〔0,π〕,arccos(cosx)=x9、x∈(—π/2,π/2),arctan(tanx)=x10、x∈(0,π),arccot(cotx)=x11、x>0,arctanx=arctan1/x,12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)反三角函数定义域及值域1、反正弦函数正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。2、反余弦函数余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。3、反正切函数正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。4、反余切函数余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
2023-05-25 07:57:131

sin的反三角函数是啥

sin的反三角函数是arcsinx,反三角函数是一种基本初等函数。三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。反三角函数是反正弦arcsinx、反余弦arccosx、反正切arctanx、反余切arccotx、反正割arcsecx、反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切、反正割、反余割为x的角。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
2023-05-25 07:57:061

反三角函数的定义域是什么

反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用深红色线条;y=arccos(x),定义域[-1,1] , 值域[0,π],图象用深蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用浅绿色线条;y=arccot(x),定义域(-∞,+∞),值域(0,π),暂无图象;sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccos x)=x,arccos(-x)=π-arccos xtan(arctan x)=x,arctan(-x)=-arctanx
2023-05-25 07:56:522

反三角函数公式有哪些

反三角函数是一种基本初等函数,常见公式主要有:arcsin(-x)=-arcsinx、arccos(-x)=π-arccosx、arctan(-x)=-arctanx、arccot(-x)=π-arccotx等。 反三角函数常见公式 1、arcsin(-x)=-arcsinx 2、arccos(-x)=π-arccosx 3、arctan(-x)=-arctanx 4、arccot(-x)=π-arccotx 5、arcsinx+arccosx=π/2=arctanx+arccotx 6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x 8、当x∈〔0,π〕,arccos(cosx)=x 9、x∈(—π/2,π/2),arctan(tanx)=x 10、x∈(0,π),arccot(cotx)=x 11、x〉0,arctanx=arctan1/x, 12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
2023-05-25 07:56:421

三角函数反函数

y=sinx,x∈[-π/2,π/2]上的反函数为y=arcsinx.t=arcsinx,所以x=sint
2023-05-25 07:56:183

反三角函数性质

反三角函数性质反三角函数是一种基本初等函数。反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有唯一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
2023-05-25 07:55:591